
/ 1

/Diab Compiler:
A Long Record of Boosting
Embedded Performance

Modern computers only understand ones and zeroes.
This can be traced as far back as the first practical digital electronic
computer conceptualized around 1937 by John Vincent
Atanasoff, a professor at Iowa State College1.

His prototype tested the two main concepts of storing binary
data in capacitors and using electronic logic circuits to perform
addition and subtraction. Computers since then have used
switches — tube transistors to integrated circuits — to run
calculations in the two-state or binary number system.

/ 2

The ON-OFF Start to Modern Computers
/ Hardware was the driver behind the binary system as it was easier to reliably
measure and distinguish between the saturated (ON) and cut-off (OFF) states
in electronic devices than to measure several states between those values.
Additionally, logic processing is quite straightforward in binary.

The binary system, however, does have
drawbacks. Firstly, it requires significantly more
digits to represent the same thing as a number
in the decimal system. For instance, the number
256 in the decimal system is just three digits
whereas its binary form, 100000000, requires
nine. The number 255 in binary, however,
requires one less digit and therefore less storage
space to hold that value. This space saving
boundary became a constraint felt in early
applications, such as 8-bit video games and
embedded software, where no number could
exceed 255 whether it represented currency in a
game or unique colors for graphics.

The other issue with binary is that humans
find it is very difficult to read. The simple

phrase, “Hello World,” which takes 80 digits in
binary, is unrecognizable by most. This makes
writing instructions — algorithms and programs
— both difficult and time consuming in binary.

/ 3

The ON-OFF Start to Modern Computers

The difficulty in reading binary was addressed
around 1947 with the introduction of low-level
human-readable assembly languages that had
each of their instructions mapped to corresponding
machine language instructions.2 Higher-level
languages (HLLs) soon followed, starting in 1952
with Autocode, the name given to a set of simplified
coding systems that were later called programming
languages. After that COBOL (1959), C (1970s), and
Swift (2014) progressively simplified programming,
making it more accessible to humans. They also
made programming increasingly efficient with the
performance of several complex tasks or functions
simultaneously. For instance, a single line of code in
C may take several lines of code in Assembly. The
overall impact was higher productivity and shorter
product times to market.

But how do computers understand anything
other than the ones and zeroes? The answer
to this question lies in the translation software
known as the compiler.

/ 4

Compilers: How Not to Get Lost in Translation
/ A compiler is a program that reads each line of a source program in an
HLL and translates or “compiles” it to an object or target language, usually a
low-level language or machine-readable code.

While compilers generally support one
source programming language, they all
have a common structure that addresses
compilation in several stages:

1. Lexical analysis: In the first stage,
also called scanning, the compiler reads
the source code a character at a time,
grouping them into tokens that represent
building blocks of the program’s syntax
and may include such objects as keywords,
identifiers, operators, punctuation, and
constants. The “lexer” or tokenizer thus
checks source-code formatting and
ensures its output stream of tokens can be
processed by the compiler.

2. Syntax analysis: In this stage, the
compiler builds a “parse” tree, a hierarchical
representation of the program, and uses it
to check for syntax errors, such as missing
brackets, and reports them for correction.

3. Semantic analysis: The compiler now
uses the syntax tree of previous phase
and symbol table to check that the source
code makes sense, looking for semantic
errors like undeclared variables and
incorrect function calls or operations using
incompatible data types.

/ 5

Compilers: How Not to Get Lost in Translation
4. Optimization: The fourth stage sees code
analysis and optimizations to improve
performance. These may include such
techniques as constant folding, loop
unrolling, and function inlining.

5. Code generation: The parse tree is
translated in final stage into machine
code executable by the processor. Processor-
specific optimizations, like peephole, value
following, value numbering, and pipeline
scheduling, may be performed at this stage.

Beyond this common structure, developers
differentiate compilers by how reliably and
quickly they perform the above stages of
compilation, what host environments they
support, the code size or footprint delivered, and
various additional features they offer to help
reduce design time, effort, and cost.

/ 6

Diab Compiler Evolution
/ The Diab Compiler has continued to evolve for nearly 40 years. Created in
the 1980s, it was architected to have a common compiler for all architectures
with architecture-specific details captured in a table file. This helped with both
its further development and maintenance and its ability to cross-compile — run
on Windows or Linux to generate code for a wide range of CPUs.

The 1990s saw many new processors
and embedded microcontrollers, and Diab
started supporting Motorola’s 68000 (m68k)
series, which targeted automotive and
similar applications. Soon thereafter, Diab
added the reduced instruction set computer
(RISC)-based PowerPC, and a long line of
processors including Motorola’s ColdFire,
MIPS, NEC v850, ARM, MCORE, M32R, SH,
Infineon TriCore, and Renesas RH850 that
were used in mission-critical applications,
including automotive, networking, industrial,
and aerospace and defense.

Since entering Wind River’s stable of
products in 2000 through acquisition, Diab

has been continuously maintained and,
leveraging the company’s close relationship
with silicon partners, continuously enhanced
for new processors with short lead times.

/ 7

The Diab Toolchain
/ Diab has evolved into two streams with the 5.9x series continuing to support
a wide range of processors, including ARM. The newer 7.x architecture, however,
leverages low-level virtual machine (LLVM) that comprises modular and reusable
compiler toolchain technologies. This allows Diab 7.x to stay abreast of evolving
embedded needs and SoC architecture advancements, supporting 32-bit and
64-bit Cortex-A, M, and R.

Major components in the Diab 7.x
toolchain include:

1. Driver: Intelligent program to invoke the
compiler, assembler, and linker components

2. Compiler: ANSI/ISO C/C++ compatible
cross-compiler, which uses LLVM/Clang in
7.0.x and EDG front-end in 5.x versions, and
supports ANSI C89, C99, C++03, C++14,
and C++17

3. Assembler: Macro assembler that
generates object modules, supports
conditional macros, unlimited number
of symbols, and provides information for
assembly program debugging

4. Linker: Provides precise control of
allocation, placement, and alignment of
code and data; offers object modules linked
into absolute or relocatable modules, and
stack usage estimates

/ 8

The Diab Toolchain
5. GNU Arm® linker support: Two equivalent
options are offered to instruct the driver to call
the GNU linker for greater GNU compatibility.

6. Libraries: Standard runtime functions.
Allows fast, efficient floating-point libraries
with full reentrancy; complete C++ library
and Standard Template Library (STL);
full complement of math libraries, including
IEEE-754 appendix functions; library
source code

7. Link-time optimization (LTO): Achieves
high runtime performance through whole-
program analysis and cross-module
optimization

8. Undefined Behavior Sanitizer (UBSan):
Modifies the program at compilation time to
catch undefined behavior.

9. Leak Sanitizer: Identifies runtime
memory leaks

10. Instruction set simulator: Simulates the
core instructions of the target processor

11. Eclipse CDT plugin: Support for Eclipse
plugins and tools for multi-platform
embedded development based on GNU
toolchains

/ 9

Key Features, Unique Optimizations
/ Diab caters to the unique needs of the embedded market with requirement
to pack high performance and functionality into devices with capabilities ranging
widely in terms of available memory space and CPU clock frequencies, and power
consumption. The compiler therefore offers hundreds of optimization options
that enable customizable executables for any embedded environment addressing
performance, memory footprint, or both requirements.

Diab’s whole-program optimization
(WPO) and LTO, mentioned earlier, give
developers complete control not only on
the performance-code size balance but
also on how optimization is achieved.
Customers can compile, optimize, and link
just one module or extend the process to
the entire project at once. During WPO,
developers can create groups of modules,
for instance, based on mission criticality.
This partitioning of modules allows them to
customize WPO behavior.

Diab’s bag of powerful tool tricks
includes the following.

• Small data area optimizer: Predefined
sections for widely used static or public
variables can optionally be created to
improve reference efficiency.

• Code factor optimizer: Diab finds common
code sequences at link time and shares
them, reducing code size.

• Reverse inlining: This option reduces
code size by factoring out repeated code
sequences into new functions.

/ 10

Key Features, Unique Optimizations
• Easy interrupt handling: Interrupt keywords
and pragmas ease interrupt processing.

• Position-independent code and data: Diab
can generate code and data that can be
loaded at any address. This is useful in devices
that dynamically load/unload modules.

• Control of structure formats: Packing
structures and removing padding reduces
footprint. Diab can also create byte-swapped
structures to optimize performance when
sharing data between big-and little-endian
processors.

• Extensive link command language for
memory mapping: Fine-grained control over
optimally laying out code and data in memory
addresses the unique memory layouts of
embedded devices.

• Support for multiple object module
formats: The compiler supports ELF, IEEE-
695, and S-Records and can generate object
modules in multiple formats.

Diab offers many more features that
are particularly useful to automotive
and industrial applications, including the
previously mentioned static stack usage
analyzer and UBSan. Other capabilities
include floating point runtime hooks for
safe handling of floating-point exception
related behaviors, allowing developers to trap
the exceptions and call appropriate helper
functions; memory area cloning feature of
the linker to clone a section faster execution;
and macro patterns option to improve on the
preprocessing time by offering developers
wildcard sequences to find and quickly
discard code not required.

/ 11

Code Validation
/ Diab Compiler ships with instruction set simulators – the Wind River
WindISS and QEMU – to allow validation of the target architecture. The
simulators allow development without the cost toward target hardware, while
delivering high productivity during iterative code validation.

When WindISS was developed, it could take
advantage of the low CPU clock of most
microcontrollers to run robust simulations.
While it is a good option for developers to
get started with the core instruction set to
test their algorithms written in C or C++,
the open-source emulator and virtualizer
QEMU3 (derived from Quick Emulator) has
come to be preferred.

Qemu is compatible with Windows, Linux,
and macOS and can run OSes and programs
made for, say ARM, on a different machine
like a PC. It uses dynamic translation to it
achieve high performance, achieving near-
native performance by executing the guest
code directly on the host CPU.

/ 12

Safety & Reliability Certified
/ Diab Compiler is certified by TÜV SÜD for developing safety-related
software to any ASIL and SIL level. It supports the following safety standards:

• Automotive applications certified to ISO
26262 by TÜV

• Industrial products certified to IEC 61508
by TÜV

• Avionics products certified for DO-178C

• Products for the nuclear market certified to
IEC 60880

• Railway applications certified to EN 50128

Diab has been tested with millions of test
cases and industry-standard test suites.
The compiler ensures interoperability and
support for all third-party tools using C and
C++ Application Binary Interface (ABI). It
uses the industry-standard Itanium ABI for
the C++ language as well as standard target-
specific embedded ABI (EABI) required when
the processor boots to load an application
with no intermediate kernel in embedded
applications. Diab also includes runtime
libraries that conform to POSIX® PSE52, the
product standard for OS environments that
provide real-time services.

/ 13

Unmatched Support
/ Diab Compiler is supported by an award-winning and Service
Capability and Performance (SCP)–certified organization and the
Wind River Support Network4 website that provides patches, manuals,
the latest errata, as well as tech tips, application notes, and answers
to FAQs. Wind River experts are available for telephone support during
standard business hours.

Diab compiler products are supported
for a minimum of seven years using
the Standard support mechanism to
address the long lifecycle nature of
embedded systems and for longer
with a Legacy support mechanism.
In addition, Frozen Branch support
is offered for any version beyond the
Standard and Legacy support options.5

/ 14

Conclusion
/ Wind River is accelerating digital transformation across industries by
delivering the software and expertise that enable the development, deployment,
operations, and servicing of mission-critical intelligent systems from the edge
to the cloud. The company’s technology is found in billions of products and is
backed by world-class services and support and a broad partner ecosystem.

Diab Compiler is one such product that
supports the transformation of the
embedded market, including mission-
critical applications in automotive and
industrial sectors. Its sustained support
for new variants of CPU architectures

and introduction of optimizations for ever
higher performance and code densities is
testimony to its long history of continuous
development and market preference.

Learn more at the Wind River Diab
Compiler page.

REFERENCES

1John Vincent Atanasoff, Britannica

2Andrew D. Booth and Kathleen H.V. Britten, Coding for A.R.C., Institute for Advanced Study, Princeton, September 1947

3QEMU

4Wind River Support Network

5Enhanced Support Offerings, Wind River

https://www.windriver.com/products/diab-compiler
https://www.windriver.com/products/diab-compiler
https://www.britannica.com/biography/John-V-Atanasoff
https://albert.ias.edu/entities/publication/27e8d743-e430-4d4d-821c-b7a7944607a7/details
https://www.qemu.org/
https://support2.windriver.com
https://www.windriver.com/support

/ 15

