
/ 1

 /Vehicle Architecture
Evolution Demands
Cloud-Ready ECUs

The future is here for automotive software and electronics,
according to McKinsey & Co., with software-defined vehicle
architecture fast becoming reality, aided by the disruptive force
of autonomous driving, connected vehicles, electrification of
the powertrain, and shared mobility (ACES). The consulting firm
predicts that by 2030 — in about three to four vehicle
generations — 70% of vehicles will have a software-defined
architecture, and automotive companies across the value chain
must begin harnessing its potential now.

/ 2

/ Vehicle architectural evolution is best understood by looking at milestones,
as shown in Figure 1. Before 2017, classically driven vehicles were characterized
by discrete electronic control units (ECUs) and their embedded software
distributed throughout the car. These parts from various vendors were
essentially assembled by the OEM with little value addition from the software
perspective. If an ECU malfunctioned or required an update, manual
replacement was required by qualified engineers at dealerships.

Architectural Evolution

Figure 1: Vehicle E/E architecture is evolving from legacy fixed-function or monolithic through domain and zonal to serverized and cloud-native goals.

*HPC: High-performance compute, e.g., Aptiv’s Open Server Platform

Initial Introductions into Production

FUNCTION (LEGACY)
Incremental mechatronic
approach to features not

sustainable

On-vehicle
Architecture

On-vehicle
Software

Software abstracted
from hardware

EV optimization
via software

(BMS)

Cloud-native
software

platforms

Scale-up of
cloud

compute

Cloud and
Development
Approach

Waterfall
Agile

development
methods

End-to end,
cloud-native

DevOps

Source of architecture innovation increasingly
driven by software, resulting in new value creation

and business model opportunities

Hybridization &
bolt-on HV

Compute
Centralization &

up-integration

Optimized HV
supporting

up-integration

HPC* for
processing

intensive apps

On-vehicle compute
augmented by cloud

Hardware-Defined Software-Defined
DOMAIN

Support for significant
new functionality through

domain up-integration

ZONE
Reduce physical

complexity through
intelligent zone control

SERVERIZATION (FULL SVATM)
Enable complex, continuously

updateable features and fail-operational
support for higher levels of autonomy

SO
FT

W
A

R
E-

D
R

IV
EN

 IN
N

O
VA

TI
O

N

2017 2022 2026

Cloud-Native
INTELLIGENT EDGE

Integrate the vehicle into the IoT
through cloud

connectivity/intelligent edge

2030+

/ 3

Architectural Evolution
/ By 2017, however, OEMs had begun thinking in terms of domains, such as
body control, powertrain, and infotainment, with some fashion of compute
centralization. And this domain notion has now evolved toward a cross-domain
physical zone based electrical/electronic (E/E) architecture that up-integrates
the large number of discrete ECUs to utilize fewer, localized, higher-performance
compute systems.

The reason behind this shift is the desire
to reduce cabling, weight, and complexity
while improving efficiency. However, the
ability to accomplish more by defining more
elements in software has opened to the door
to yet increasing complexity. OEMs continue
to extend their zonal architecture toward
serverization, leading companies such
as Aptiv to further reduce the number of
compute units by integrating more software
onto larger, high-performance compute
(HPC) units.

The cloud-enabled car of 2030 will
continue performing the many critical real-
time functions onboard, such as antilock

braking system code. Rather, the cloud will
instead assist via public or private cloud
setups in providing additional services such
as routing to available parking based on
current location or destination.

The E/E architectural evolution has
already come a long way on the timeline
in Figure 1 and is now beginning to use an
agile development model. Over the next
few years, OEMs will adopt a software
development and IT operations (DevOPs)
type of environment that enables continuous
integration, continuous test, and continuous
delivery. The heavy lifting for this ability will
be done by containers.

/ 4

What is Containerization?
/ Containerization is the evolutionary step up from modularization,
in which several software systems are examined to identify areas
where “reuse” can be derived. Those areas are then isolated into
different modules. This enables development teams to clearly
understand the purpose of each module and, if the system fails,
quickly find out what went wrong. The container packages such
modules with operating system (OS) libraries and dependencies, so
it has everything any hardware compute environment would require
to consistently run a lightweight executable.

The up-integration of cloud
computing technologies
into vehicles to provide
new features, services, and
experiences starts with
eliminating existing ECUs by
abstracting their functionality,
modularizing, and containerizing
the modules for delivery.

/ 5

Containers Ease Management
/ Traditional software management in embedded systems is an expensive
task with possibly dozens of software solutions to update. These solutions are
monolithic and often proprietary in nature, and it is challenging to ensure that
they will reliably work when implemented in the vehicle.
In contrast, the self-
contained package that is
the container is supported
by the Open Container
Initiative (OCI)–based
runtime interface that makes
the deployment runtime-
agnostic. The OCI specifies
how containers move from
the lab to a public or private
container registry from
which cloud-ready vehicles
get access within a security
framework. Finally, a tool
is needed for managing
container delivery from the
cloud to the vehicle edge.
The Kubernetes open source
container orchestration

system, widely used by cloud
software developers, is the
obvious path for this step.

Containerization is thus
the model that allows easy
management of individual
service-oriented blocks of
code. Since more than 60%
of back end developers
already use containers to
build and deploy software,2
it is the logical and essential
element of the software-
first approach to vehicle
architecture.

/ 6

Lift and Shift Design
/ The traditional approach to ECU
design is fast becoming unsustainable.
Take for instance, an existing
AUTomotive Open System ARchitecture
(AUTOSAR) environment as shown
in Figure 2, with the real-time
environment (RTE), basic software
(BSW), and OS layers sitting on
the ECU hardware. Each feature
functionality, such as driver drowsiness
recognition (DDR), lane departure
warning, or the speedometer, is
implemented monolithically on an
independent ECU. This architecture
makes it difficult to maintain and
upgrade the system due to its inflexible
approach — an anathema to progress
toward cloud-ready vehicles

CAN Bus CAN Bus

Figure 2: As the only RTOS that supports OCI containers at all levels of safety up to ASIL-D, VxWorks allows software to be containerized
and easily Lifted and Shifted to new hardware.

Status quo Proposed up-integration

Consolidated ECU

DRIVER
DROWSINESS
RECOGNITION

RTE

ECU ECUECU

BSW OS BSW OSBSW OS

RTERTE

SPEEDOMETER
LANE

DEPARTURE
WARNING

Container 1 Container 2 Container 3

Container N

Multi-core Soc

DDR Speedometer

New Software

Native App
Native

App
Native

App

Supports all
safety levels

(up to ASIL-D)

Same
constructs for

Linux and RTOS

Safe Type 1 Hypervisor

 Linux Vx Works

Container EngineContainer Engine

Container

Container

Safe Type 1 Hypervisor

LDW

/ 7

Lift and Shift Design
/ In a cloud-ready environment, a Lift-and-Shift or rehosting
approach reduces the effort and cost inherent to migration
processes. It simply takes an exact application copy, complete in its
container, from its legacy environment or the cloud to its new
up-integrated environment of multi-core SoC-based HPC.

Engineers can implement
Lift and Shift in one of two
ways shown in Figure 2
(right). They can lift AUTOSAR
stacks packaged in containers
and deploy them with a
container engine that runs
on VxWorks®, which sits on
a hosted Type 1 hypervisor.
Alternatively, the application,
the OS, and the hypervisor can
be containerized to make the
run environment even more
predictable.

/ 8

Lift and Shift Design
/ The first benefit of lift and shift, that of
software reusability, is illustrated in Figure 3.
Since there are significant dependencies
across software components in the legacy
monolithic software structure, code change
in one component may require cascading
updates across the entire code base. The
service-oriented structure’s containerized
approach, on the other hand, reduces
dependencies and code change is contained
to only the relevant components.

Figure 3: The service-oriented structure eases updates and reuse by avoiding the monolithic structure’s dependencies across components.

MONOLITHIC

Single, Complex, Intertwined

SERVICE-ORIENTED

Standard APIs

 Changes Required to Update Takeover Readiness

Container Runtime Engine

Takeover
Readiness

(TR)

Lib#1

CONTAINER

Takeover
Readiness

(TR)

Bin/lib for TR

Driver-
Drowsiness
Recognition

(DDR)

Lib#2

CONTAINER

Driver-
Drowsiness
Recognition

(DDR)

Bin/lib
for DDR

CONTAINER

Speedometer
(SM)

Bin/lib
for SM

CONTAINER

Auto
Emergency

Brake
(AEB)

Bin/lib
for AEB

Lib#4

Auto
Emergency

Brake
(AEB)

Lib#3

Speedometer
(SM)

Lib#6

Navigation
(NAV)

Lib#7

Lib#5

CONTAINER

Navigation
(NAV)

Bin/lib
for NAV

/ 9

Architecture Considerations for Evolution
/ There are, however, hardware and software considerations that influence both the type of implementation and
the pace of change. Hardware considerations include:

Cost
Existing microcontrollers
in ECUs are cheap
compared to the
SoCs needed for HPC.
Although HPC units
needed are fewer, the
trade-off between the
competitive capabilities
desired and the cost
they could entail must
therefore be carefully
evaluated.

Power
consumption
With the electrification of
the power train in mind, it
is important to consider
the power budget
through a comparison
of the total power
consumed by numerous
microcontrollers (lower
power, less efficient)
with fewer SoCs (higher
power, more efficient).

I/O
availability
Fewer HPC units might
mean fewer I/Os than
required. While this issue
is being addressed by
hardware vendors, it is
important to consider it
during SoC selection.

Supply chain
With chip availability now
a challenge, it is critical
to understand the impact
of maintaining existing
supplier relationships
over seeking new HPC
suppliers promising new
capabilities.

Cabling
This is a key
consideration in making
any design change
in the automotive
industry. It could be
advantageous, for
instance, to implement a
car door as a zone with
its own HPC to avoid
additional cabling that
separately controls not
just the power windows
and door locks but also
loudspeakers and lights.

/ 10

Architecture Considerations for Evolution
/ The software considerations in going cloud-ready are:

Modularization
The key consideration is whether
legacy software can indeed be
modularized or must be lifted and
deployed in its entirety in a container.

Overhead
The service-oriented architecture
has additional layers of software.
While some, like the Wind River®
hypervisor, have zero overhead, the
RTOS overhead to meet tight timing
constraints must be taken into
account.

Code availability
Legacy code may not always be
available, with older functions only
existing as binaries. The lack of future
flexibility must be considered against
today’s additional effort in making the
transition.

Effort
Effort and cost: Change requires time,
work, and additional expense. With
hard deadlines in the background,
the overall cost of change is a
consideration that dictates its pace

/ 11

Collaborating to Bring Change
/ Updating the vehicle’s E/E architecture is a big ask, but a three-pronged
strategy takes much of the effort and pain away.

Open Standards
The cloud-ready vehicle is
backed by standards such
as the OCI, which has an
open governance structure
under the Linux Foundation.
The Wind River product
portfolio is built around open
standards that welcome
participation from the
developer community.

Collaboration
Wind River collaborates
with partners in providing
tools and helping industries
work with a mix of
proprietary and open source
implementations.

Recent
Precedent
Similar architectural
change has already been
accomplished, most
recently by the telecom
industry, and offers
lessons in revolutionizing
product roadmaps. Telcos
have evolved from highly
specialized proprietary
hardware and software
implementations to a more
commoditized approach,
particularly with 5G and the
ability there to focus more
on value addition.

/ 12

Conclusion
/ As vehicle architecture continues
to evolve, the need for cloudy-ready
ECUs will only continue to grow.
Wind River provides the tools and
technologies that act as a bridge
between today’s customers and
their desired future. Wind River is
well positioned to help automotive
companies navigate this evolution with
our portfolio of products and services
that enable intelligent edge computing.

REFERENCES

1 McKinsey & Co., Outlook on the Automotive Software and
Electronics Market Through 2030, January 3, 2023

2 Data, Cloud-Native Computing Foundation, The State of
Cloud-Native Development, May 2022

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030
https://www.cncf.io/wp-content/uploads/2022/05/Q3-2021-State-of-Cloud-Native-development_FINAL.pdf
https://www.cncf.io/wp-content/uploads/2022/05/Q3-2021-State-of-Cloud-Native-development_FINAL.pdf

/ 13

