
That Other Testing Does Not

Full Software System Simulations

Can Reveal Cyberattack Vulnerabilities

FULL SOFTWARE SYSTEM SIMULATIONS CAN REVEAL CYBERATTACK VULNERABILITIES THAT OTHER TESTING DOES NOT

2 | White Paper

EXECUTIVE SUMMARY

Complex embedded systems pose challenges for cyber testing and vulner-

ability analysis. Testing system interfaces is not sufficient, and dynamic analy-

sis requires instrumentation that makes the process overly complex.

There is an alternative approach: Instrumenting high-fidelity hardware models

can offer superior insight into software behavior while also allowing the

simulation to be recorded, paused, inspected, and reversed.

TABLE OF CONTENTS

Executive Summary . 2
Instrumenting Systems for Cyber Testing: Necessary but Challenging 3
Save Time and Money with Full System Simulation . 3
 Using RESim for Dynamic Analysis . 4
 Better Together . 4
 Simplify When Using Fuzzed Data . 5
Case Study: Simulation Workflow for an Example Notional System . 6

FULL SOFTWARE SYSTEM SIMULATIONS CAN REVEAL CYBERATTACK VULNERABILITIES THAT OTHER TESTING DOES NOT

3 | White Paper

If not done thoroughly, cybersecurity testing and vulnerabil-
ity analysis of complex embedded computing software can
leave systems open to cyberattack. Simply testing system
interfaces, for example, can fail to detect vulnerabilities.
Dynamic analysis is an alternative, but it requires instru-
mentation that can be difficult to deploy, or it may require
substantial harnessing. Failure to provide source code or
detailed documentation can make it even more difficult to
conduct effective cybersecurity testing.

Instrumenting high-fidelity hardware models is a better
alternative. This approach gives system designers a better
understanding of software behavior, while enabling analysts
to record, pause, inspect, and reverse the simulation.

INSTRUMENTING SYSTEMS FOR CYBER TESTING:
NECESSARY BUT CHALLENGING

Cybersecurity testing is evolving away from traditional, func-
tional security testing. New testing approaches that involve
fuzzing and fault injection tend to be more ad hoc in nature.
The goal is to exercise the software interfaces and protocols
in an effort to break the software with unexpected data.

With dynamic analysis and cybersecurity testing, teams
must observe how software executes under different con-
ditions and determine code coverage. In addition, fuzzing
tools require code coverage feedback, so teams know when
they’re making progress.

Instrumenting embedded systems — adding code to gather
data and metrics — is the best way to gain visibility into what’s

happening in the box. Instrumentation can detect anomalies
and see how tests are executing software.

Unfortunately, instrumentation isn’t always easy, and it can
create side effects. This is particularly true with embedded
systems. In these cases, teams usually instrument hardware
models of target systems. With this approach, the software
runs in a simulation of its native environment.

SAVE TIME AND MONEY WITH FULL
SYSTEM SIMULATION

By using full system simulation to create a digital twin of
complex systems, teams can automate systems that would
be costly and difficult to conduct on physical hardware. Such
a digital twin helps identify and address issues before they
occur in the real world.

It’s possible to simulate hardware systems from chip to
system, test in a virtual environment, and replicate system
behavior through testing and analysis. This offers advan-
tages over conventional unit testing and static code analysis.
Full system simulation improves collaboration and efficiency
in embedded development by allowing teams to pause,
rewind, and record sessions for future analysis, formal quali-
fication testing, and more.

Wind River® Simics® is a modular simulation system that pro-
vides a simulation core, an API, and the ability to dynamically
load Simics modules. This architecture supports the creation
of additional tools to enhance or create features.

Ta
rg

et
 S

of
tw

ar
e

St
ac

k

Simics Core

Vi
rt

ua
l

H
ar

dw
ar

e

Model
Library

CC++, SystemC
Python, DML

Wind River

Customers

Ecosystem

Off-the-Shelf

Other Tools
Such as Sim,
Debug, Test

Real-World
Equipment

Virtual Serial,
Keyboard,

Mouse,
Graphics

W
in

d
Ri

ve
r S

im
ic

s
Vi

rt
ua

l P
la

tf
or

m Application Software Middleware

Drivers, BSP, Firmware, RTOS

Hypervisor

Processors Memory Storage Devices
Network
and I/O

Figure 1. Simics architecture

FULL SOFTWARE SYSTEM SIMULATIONS CAN REVEAL CYBERATTACK VULNERABILITIES THAT OTHER TESTING DOES NOT

4 | White Paper

A Simics model may contain a single device or processor
model, or all the models of a system-on-chip (SoC). A model
can also include a set of simulator features relevant for a
specific use case.

Simics can be integrated with other software modeling frame-
works. It can simulate software data or signals to generate
complex feedback loops within a virtual system that would be
difficult to execute in a real-world environment.

Using RESim for Dynamic Analysis

RESim is a reverse-engineering platform that supports
dynamic analysis of simulated systems. An open source
reverse-engineering platform developed by the Naval
Postgraduate School, RESim is a powerful tool that allows
users to perform dynamic analysis on simulated systems,
including monitoring and modifying system states, tracing
execution, and injecting faults.

This platform was originally developed as part of the
DARPA Cyber Grand Challenge, and it has since become an
essential tool for teams looking to test system behaviors
under various conditions that are impossible to replicate
with conventional tools.

RESim is designed to meet four objectives:

1. Identify and analyze software that executes on
embedded systems.

2. Reverse-engineer protocols used by services
on those systems.

3. Discover and analyze potential vulnerabilities.
4. Understand what’s happening on unknown, “black box”

systems and test them.

Better Together

By using Simics and RESim together, teams can create real-
world cyber testing scenarios that accurately represent sys-
tem behavior.

Simics’ full system simulation environment allows teams to
model an entire system, including the hardware, firmware, and
software. RESim extends Simics, providing enhanced capa-
bilities for reverse-engineering and cyber testing.

When Simics and RESim are combined, it is possible to
identify and address potential system vulnerabilities and
weaknesses, simulate edge cases, and perform cyber testing
efficiently and cost-effectively. Multiple scenarios can be
tested in parallel, which requires fewer testing resources than
conventional test methods.

For embedded systems, software is run on hardware models,
and RESim observes what is happening by instrumenting the
hardware. It observes simulated memory and the processor
from the other side of the hardware.

This methodology gives teams unique insights into the
behavior of the software:

• Full system execution traces build a complete picture of the pro-
cesses and software programs that are running, as well as the
network connections that are made.

• If the system connects to a network or binds to a port, all inter-
process communication is visible, such as establishing shared
memory or pipes and IPC mechanisms.

• It is possible to perform dynamic analysis of individual processes.
RESim’s IDA Pro or Ghidra plugins transform Simics into a debug-
ging server that controls execution and provides the ability to run
forward or backward to system events.

• Teams can track ingested data and every reference that the appli-
cation makes to that data. Each reference is a bookmark that ana-
lysts can use to jump to the context in the execution environment.

• Data can be injected directly into the application memory, thanks
to the integration of the AFL fuzzer into RESim. This enables ana-
lysts to run the target to the desired starting state, rather than
building test harnesses.

Simics is available from Wind River and RESim can be
downloaded from a GitHub page.

“Simics has been used by the likes of NASA and
the U.S. Navy, as well as aerospace and defense
industry leaders. It allows you to create simulation
models that save time and money for complex
missions and commercial products.”

—Hans Weggeman, Wind River

FULL SOFTWARE SYSTEM SIMULATIONS CAN REVEAL CYBERATTACK VULNERABILITIES THAT OTHER TESTING DOES NOT

Simplify When Using Fuzzed Data

When using fuzzed data, full system simulation eliminates the need to set up harnesses.
When teams use fuzzing tools, they often want to monitor the target application’s
consumption of fuzzed data. However, real applications can be complex; they are often
not just a simple service. In addition, analysts may need to interact with the target
application to bring it to the desired state for fuzzing.

Simics simplifies these challenging real-world conditions. A simulation can be run
exactly to the point where fuzzing should begin, and fuzzed data can be directly injected.

5 | White Paper

SimicsHardware Models

SimicsHindsight

RESim

Linux Kernel

Application

x86

Linux Kernel

Application

Arm

Figure 2. Simics and RESim create a view from the other side of the hardware

“Imagine getting a memory corruption error at some point in a program.
You can set a breakpoint on the memory that was corrupted, execute
backwards, and find the most recent write to that corrupted memory. It
makes debugging so much easier.”

—Mike Thompson, Naval Postgraduate School

7 STEPS TO INJECT
FUZZED DATA
To directly inject fuzzed data into a

Simics simulation:

1. Snapshot when the
application has returned
from a recv system call.

2. Instrument the desired
basic blocks.

3. Inject fuzzed data into
the application buffer
and adjust returned size.

4. Unpause the simulation
and let the application
consume the data.

5. Jump over subsequent
read calls and inject
more data.

6. Feed instrumentation
results back to AFL.

7. Restore snapshot and
repeat, using Simics
in-memory snapshots.

Produces:

• Full system traces
• Process inventories
• Input data traces
• Reverse data tracking
• Automated crash analysis
• Code coverage

Simics Hardware Models

SimicsHindsight

Linux Kernel

Application

x86

Linux Kernel

Application

Arm

Hardware Hindsight

RESim

Simics Dissambler/Debugger -
IDA or Ghidra

AFL Fuzzer

Figure 3. Human-in-the-loop fuzzing

FULL SOFTWARE SYSTEM SIMULATIONS CAN REVEAL CYBERATTACK VULNERABILITIES THAT OTHER TESTING DOES NOT

Using RESim to reverse-engineer a system typically requires
nine steps:

1. Extract the system software from the targets. Identify the
Simics model that represents the hardware or customize
a model to host the software. Define a set of virtual
network interfaces and set up a driver computer that will
interact with the targets.

2. Run a full system trace to identify processes of interest.
Usually these are processes with network interfaces that
may listen on ports.

3. Direct RESim to debug the selected target process. RESim
runs the system forward until the desired process loads,
and then the simulation stops. RESim tracks the data read
in through a port and determines what the application is
doing with that data. Through a driver device, the analyst
sends test data to the target port and watches as the
application references the data.

4. Use RESim IDA Pro or Ghidra plugins to manage the debug
session. The plugins create bookmarks with input data
reference points that analysts can use to reverse-track data
sources and conduct a first-level analysis of the protocol.

5. Start an AFL fuzzing session using RESim. Based on the
results of the initial analysis, the analyst can create input
data “seeds.” RESim injects the fuzzed data from AFL into
simulated RAM and instruments target process basic blocks.

6. Commence AFL sessions at the precise point of data
read. The snapshot creation process is fully automated.
This eliminates harnessing challenges associated with
fuzzing because the software and applications can be
run in their native environment.

7. Review the results of the AFL fuzzing session. RESim
provides an automated crash analysis that identifies
the corruption source. It also replays all “good” AFL
results, populates a database with that information, and
generates a report on “branches not taken” (BNT).

8. Direct RESim to find inputs for a BNT and load that
session. RESim can optionally identify BNT blocks that
reference inputs and analyze execution to determine
whether the BNT can be reached.

9. Add newly found inputs to fuzzing seeds and repeat
the process.

Simics and RESim simulations don’t require supercomputer power. The barrier to entry is low. A basic engineering workstation is
sufficient to simulate multi-computer networks.

Additionally, it’s not necessary to have perfect hardware models. The generic platform models of Simics are often adequate to
execute most target software. Before investing time in customizing models, consider the cost-benefit trade-off.

Additional Resources
8 Factors for Effectively Using Simulation at the Intelligent Edge
Full System Simulation: Why Hardware-Based Testing Won’t Cut It for Today’s DevOps Teams

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the digital
transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2023 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 07/2023

CASE STUDY: SIMULATION WORKFLOW FOR AN EXAMPLE NOTIONAL SYSTEM

https://www.windriver.com/resource/eight-factors-simulation-white-paper
https://www.windriver.com/resource/full-system-simulation-whitepaper

