
 /From Prototype
 to Post Deployment:
 Linux Decision
 Points

Developing embedded solutions can be a journey.
Not all applications start at the same place in
the journey or take the same development path,
but a common theme applies to the steps involved.
First there’s the idea or concept, followed by
prototyping; then design, development,
deployment, and post-deployment maintenance.

/ 1

This e-book will walk the reader through this
journey and touch on key considerations
throughout development. But before starting
the journey, we should ask ourselves: What is our
business strategy for open source leadership?
Unique code contribution? Delivering a service?
Or building an innovative product?

This becomes important, as it can be used as a
guiding light for making big decisions.

 Linux Decision Points

/ 2

Idea

Security
Management

Defect
Management

Technical
Debt

Fielded
Product

End of Project
5,10,15+ years

Deployment

Prototype

Design

Open Source
Engagement

IP
Governance Development

Why Linux?
So why is Linux appealing at the edge? The edge is a natural extension of the
cloud, which was built on Linux and open source technologies and practices.
The Linux Foundation openly cites more than 235,000 developers, more
than any number you’ll find at a single company. In addition, its open source
contributions consist of more than 19,000 contributing companies as well as
1.15 billion lines of code.

At the end of the day, how does a company
decide whether to use a COTS distribution
or a specific vendor (either a semiconductor
vendor, board vendor, or commercial OS
vendor)? The answer ties back to the
company’s business strategy and the factors
critical to its success. Is a competitive
control point needed to level the playing
field? Or is innovation the primary focus?
This should help guide you on your journey,
and the answers may evolve and change
over time.

ON THE ADOPTION SIDE, HERE ARE SOME
OTHER FACTS ABOUT THE LINUX PLATFORM:

of supercomputers
use Linux.

of public cloud providers use
Kubernetes.

�of global mobile subscribers use
devices run on networks built
using ONAP.

of Fortune Top 50 blockchain
deployments use Hyperledger.

�of all global auto shipments
supported by OEMs use
Automotive Grade Linux.

/ 3

Prototype
We begin by putting an idea or concept to the test,
as in making a prototype. Developers will use whatever
is readily available to them and learn, fail, recover, and
create whatever they need. This could involve ordering
development kits (such as Raspberry Pi), downloading
free distributions, monitoring forums, grabbing interesting
code from GitHub, or emulating hardware or kernel
subsystems — whatever is needed to prove a concept.
This is an important phase in which developers learn
as much as possible to have deeper insights for future
decision-making.

/ 4

Design
The design phase involves
assessing requirements
and technologies. If we look
at the requirements at the
intelligent edge, they vary widely
depending on the edge solution.
It may be tempting to start
with an enterprise commercial
off-the-shelf (COTS) Linux
distribution and be finished. But
consider COTS vendors and
how their distributions deliver
against the general needs for
a larger population, and the
way in which requirements and
expectations tend to be more
specific closer to deployment.
Those with more specific edge
application needs will likely not
intersect on all requirements
for a COTS distribution, which
in turn might not apply enough
toward the edge. Examples of
these requirements are:

/ �Nonstandard hardware

/ �Certification (in some cases)

/ �Performance, real time,
and low latency

/ �Small footprint

/ �Security

/ �Artificial intelligence and
machine learning

In many cases, edge hardware
is nonstandard, with unique
components and industry-
specific device certifications
that are unique and likely not
supported by COTS hardware.
COTS solutions may offer
certifications that are aimed
at a broad audience and not of
particular interest to an open
source community.

Tools and utilities are
another area where the
intelligent edge and COTS
may differ. COTS and openly
developed distributions will
have their own service that
manages dependencies and,
perhaps, version control.
Thus they might have many
dependencies not needed for
your edge product; they may
also have a larger footprint and
attack surface.

/ 5

IP Governance
Governance is about protecting your intellectual property (IP)
and protecting the contributions of communities with licensing.
From a corporate perspective, a company’s IP is at risk without a
strong policy that includes some of the following key principles:

/ �Developers must receive approval
before integrating open source
into the product code base.

/ �Third-party software, including
open source, requires auditing.

/ �Approval for code in one product
doesn’t mean it’s acceptable for
use elsewhere.

/ �This protective policy must be
in place before shipping to a
customer.

A key emerging trend in open source
software is the creation and use of a
software bill of materials, or SBOM.
The SBOM is shipped with your
product; it identifies all the software
components in your product and the
licenses they use. Another common
practice is to create an Open
Source Program Office to create the
policy and execute the governance
practice. The Open Source Program
Office would provide oversight for
all upstream contributions as well
as licensing and governance for all
projects in the organization.

/ 6

Open Source Engagement
Engagement with open source communities must be grounded in your business
priorities and business strategy. The Linux Foundation has dozens of embedded projects,
and you will engage on the subset of those projects (including the Yocto Project) that is
consistent with your business vision. Engagement can be viewed in four categories:

Consume
In this category,
developers simply
take what they can
and leverage what is
available, with minimal
or no engagement with
the community.

Participate
This category
represents a stronger
two-way engagement
and aligns more with
the community’s goal.
Projects may have
enough similarities
with your own that
you’d want to track
or evaluate using
one or more of them,
potentially purchasing
an introductory-level
membership.

Contribute
Here your participation
becomes more
influential and
represents your core
values. This is often
done with key projects
that your product is
dependent on, when
you might wish to
have more influence
in getting code
upstreamed.

Lead
Now you are driving
an entire project or
community and taking
a leadership role on the
board or on technical
committees.

/ 7

 Technical Debt
Technical debt is the cost of maintaining source code caused by a deviation from the
main branch where joint development happens. It’s the enemy of the pursuit of business
strategy and innovation, burdening it over time with the weight of unnecessary and distracting
maintenance. Developers are faced daily with the need to solve critical bugs without
timely community support. Often they are forced to decide whether to wait and push their
innovations upstream or move forward and release as early as possible. If the innovations or
patches are not pushed upstream, the result may be long-term technical debt. The debt must
be managed aggressively and pulled through to make it mainstream again. Up front, this can
be costly and resource heavy, but in the long term it can be the cheaper solution.

If developers or leaders find
themselves taking on technical
debt without a long-term plan,
and there seems to be no way
to avoid this situation, it’s best
to find a partner or service to
take it on instead. Some typical
symptoms of technical debt:

/ �An inability to include
upstream innovations and
features in your code is one
signal.

/ �Increased security risks —
who is monitoring your code
for CVEs? If it is upstream,
the community will help
monitor those plus your
code’s induced issues.

/ �Increased code maintenance
time and effort — the

complexity of getting
technical debt to work
correctly with upstream code
increases over time.

/ �Increased onboarding time;
this is subtle but important
and is due to the need for
insider developer training on
the code base.

/ �Similarly, difficulty in hiring
or maintaining open source
developers is another sign.

/ 8

Linux Security and Defect
With a recent executive order on “Improving the Nation’s Cybersecurity,” it has now
become more important than ever to implement protection against aggressive new
threats and perform security assessments. The Linux Foundation has announced the
formation of the Open Source Security Foundation (OpenSSF), which is committed
to improving the overall security of open source software. However, awareness of the
processes, resources, and talent requirements to manage security responses may not
be straightforward and can easily drop off. If security management isn’t fully aligned
with your business strategy consider that it may not be a differentiator and may also
require a full-time team of experts.

As the complexity of the open
source code base grows, so
does the number of common
vulnerabilities and exposures
(CVEs). As the developer
leverages open source code,
it’s important to consider that
it might have flagged CVEs, but
not all will be relevant to your
implementation or represent
a high enough risk to prioritize
and fix immediately. And as

community patches become
available, it’s important to verify
they’re acceptable for your
product or if backporting is
needed. If not, CVEs can also
add to your technical debt.

Managing defects is similar
to managing CVEs, but there’s
a twist: If you’ve positioned
yourself as a contributor in an
open source community, you
can influence the direction

and adoption of a patch. But
you’ll need to work it upstream
and implement it in a way
that benefits everyone in the
community.

If engagement on either CVEs
or defects is at a minimum,
partners (such as Wind River®)
are available to help manage
your distribution defects over
the long term.

/ 9

Wind River Can Help
Ultimately, everyone will face an obstacle that impacts speed,
resources, and quality. Below are some of the elements associated
with most of the challenges developers face on their Linux journey:
/ �Platform architectural

assessments, software design, and
implementation

/ �Security vulnerabilities alerts,
analysis, and mitigation

/ �Long-term Linux platform security
and defect maintenance and
support

/ �Performance and reliability
requirements

/ �The latest industry-specific features
and standards

/ �IP compliance audits and
remediation recommendations

Wind River can be a partner to you,
no matter where you are in the
product lifecycle. Available support
includes solution assessments and
implementation, security compliance,
analysis, remediation, and lifecycle
performance assurance services.
Know your business strategy, reduce
your technical debt, and reach out for
help when you need it.

/ 10

/ 11

