
Wind River Linux
Distribution

Purpose-Built

Create and Customize Your Linux

1

Wind River Linux
Distro BSP Support

Intel Ice Lake

Intel NUC Kaby Lake

Intel Snow Ridge

Interk Tiger Lake UP3

Intel Stratix 10

Marvell Octeon CN96xx (TX2)

NXP i.MX8 QuadMax MEK

NPX S32G

Raspberry Pi 4

TI DRA829/TDA4xM

Xilinx UltraScale+MPSoC

Xilinx Zynq-7000

.. and more

Figure 1: Wind River Linux Distro
hardware support list

1 “Embedded System Market to Hit USD 138.45 Billion by 2028” (press release), The Brainy Insights, February 3, 2022

As processing power increases each year, so does
the number of embedded devices. According to a
2022 forecast from The Brainy Insights, the global
embedded systems market is expected to grow at
a compound annual growth rate of 5.7% by 2028.

Although some applications require a real-time operating system, using
an RTOS comes with several challenges, including cost of development,
time-to-market, memory management, security, hardware compatibility,
and compliance.

Wind River® Linux, an open source, embedded Linux development plat-
form, provides a supported solution that addresses many of these diffi-
culties while greatly accelerating time-to-market. As a leading contribu-
tor to the Yocto Project and other open source communities, Wind River
has helped customers deliver embedded solutions across a variety
of industries and applications (aerospace and defense, automotive,
industrial, medical, telecom) for more than 40 years. And it does this
by providing designers with a toolset to create their own purpose-built
Linux systems.

The Wind River Linux Binary Distribution
Previously, Wind River Linux was only available in a source-based
distribution builder (known as Wind River Linux) that allows embedded
developers to build an entire Linux operating system from source for
complete customizability. While powerful, that approach has a high
learning curve and may not be best choice for development of all em-
bedded solutions. In contrast, the Wind River Linux binary distribution
(Wind River Linux Distro) can be used to create and customize your own
Linux image in just a few minutes.

https://www.globenewswire.com/news-release/2022/02/03/2378667/0/en/Embedded-System-Market-to-hit-USD-138-45-billion-by-2028-Advancements-in-Consumer-Electronics-Technologies-and-IoT-Solutions-Business-Segments-Market-Share-Analysis-Regional-Growth.html#:~:text=03%2C%202022%20(GLOBE%20NEWSWIRE),the%20forecast%20period%202021%2D2028

2

Wind River Linux Distro is based on the Wind River
Linux LTS 21 source release and supports a variety
of Arm® and X86 platforms. With project-based
pricing, there are no end-device royalties. And, if
needed, a user can opt for extreme customization in
the Wind River Linux source-based product.

The Wind River binary distribution provides micro-start images that install
all necessary packages and file systems on first boot. This includes two
configurations: a small minimal image and a full-function image with a
graphical user interface. The binary packages come in RPM format and
include a tool that assembles packages into several types of images. In
addition, an SDK helps support platform and application development,
while OSTree (a system for versioning updates) and OSTree wrappers are
supported for simplification.

The most important benefit of the binary distribution as compared to the
source code distribution builder is how quickly a user can create an em-
bedded Linux image. Steps for a basic use case are outlined in the sidebar
at right.

Other benefits of Wind River Linux Distro include:

• Micro-start of self-deploying images using OSTree
• Package updates via OSTree
• Package feed enabling adding packages to your image
• Software development kit with the Linux Assembly Tool (LAT)
• Binary container base image on Docker Hub
• Signing to inhibit tampering
• Hardware support for several platforms (see Figure 1)

AN EXAMPLE USE CASE

Let’s look at a use case for
installing and building an
image:

1. Install the device: Get
the image.

2. Customize the device:
Get the image and
install packages from
an RPM feed.

3. Build an image: Get
the SDK and build the
image.

4. Device update: Use
OSTree to update and
use package feed to
update the package
release.

5. Build containers: Pull
from the container
registry and update
from RPMs.

6. Build a package feed:
Use SDK with the Linux
Assembly Tool (LAT) to
build images, contain-
ers, package feed, and
OSTree feed.

A quick-start guide can be

found here: docs.windriver.

com/bundle/Wind_Riv-

er_Linux_Distro_Develop-

ers_Guide_LTS_21/page/

vcb1630021339626.html

Key Benefits of
Wind River Linux Distro

http://docs.windriver.com/bundle/Wind_River_Linux_Distro_Developers_Guide_LTS_21/page/vcb1630021339626.html
http://docs.windriver.com/bundle/Wind_River_Linux_Distro_Developers_Guide_LTS_21/page/vcb1630021339626.html
http://docs.windriver.com/bundle/Wind_River_Linux_Distro_Developers_Guide_LTS_21/page/vcb1630021339626.html
http://docs.windriver.com/bundle/Wind_River_Linux_Distro_Developers_Guide_LTS_21/page/vcb1630021339626.html
http://docs.windriver.com/bundle/Wind_River_Linux_Distro_Developers_Guide_LTS_21/page/vcb1630021339626.html

3

OSTree performs atomic upgrades of complete file system trees (such as
Git). It can do so with incremental updates, rollback, deterministic up-
dates, complete image replacement, and with or without an A/B partition
scheme. This makes it well suited for CI/CD. Figure 2 shows a disk view
of OSTree updates.

Micro-start images (ustart.img) are used in the distribution process. The
default image includes a compressed version of an installer as well as init-
ramfs, boot loader, kernel, and an OSTree repository; a custom image would
just have the boot loader and a network connection to bring over everything
else. This process provides a flexible install with fresh file systems and the
ability to factory-reset corrupt devices to their original install state. And if a
user were to rebuild the binary distribution, they could install directly from
a network (and use a network for PXE/Net UEFI/U-Boot) as well as alter-
nate disk layouts (use A/B partitions, add additional partitions, and encrypt
rootfs and data using a TPM stored key).

When you customize your image, /etc and /var are persistent by default
unless a factory reset or factory upgrade is performed, but a user can use
ostree admin unlock to temporarily unlock. And, by default, ustart.img does
not enable a console, but this can easily be enabled.

While the initial image lies within Docker Hub, the binary distribution
container base (which is roughly 36 MB compressed) contains a package
manager and is built from the exact same package feed as the released
OS. There’s also an option for a smaller reference (only 5 MB), but you must
build from source Wind River Linux distribution and select the OPKG Pack-
age Manager to build the container base.

OSTree Benefits
and Purpose

/dev/sda4

Active OS

Inactive Files

OSTree Medadata

Filesystem V1.0 Filesystem
V 1.1

/var and Other Partitions ...

/dev/sda4

OSTree Medadata

Filesystem V1.0Filesystem
V 1.0

/var and Other Partitions

Reboot

External
OSTree
Repository

Figure 2: Disk view of OSTree update

4

The LAT can be used to perform a number of tasks to help manage
images, build and publish RPM packages (from any files, including
third-party content), generate images from feeds for specific hardware,
create customized initramfs boot loaders and custom deployment ac-
tions, and generate updated SDKs.

Think of LAT as a set of plastic toy construction blocks, like Legos. But
instead of building toys, you’re assembling software into an embedded
solution. The build system creates “bricks,” or apps/libs/packages,
which provide each of the Lego pieces (artifacts). Building an RPM may
consist of starting with external content or materials (such as glue,
plastic, etc.) and then using the LAT genrpm (3-D printer, in this case) to
produce custom packages (or Lego bricks, in this analogy). Building a
boot loader (appsdk geninitramfs) would essentially build the floor or
foundation for these bricks. And while building the containers (appsdk
gencontainer) creates rooms or houses on top of this foundation, build-
ing the SDK (appsdk gensdk) packages everything up into a kit — sort of
like a prepackaged Lego kit.

The Linux Assembly Tool and
a Lego Brick Analogy

Figure 3: The LAT and developer lifecycle

Platform Developer App Developer

Feed Back to Platform Developer

Deliver to App Developer

Create
Manifest and
Platform API

Deploy to
Hardware

Scan
Hardware
Resources

Select
Software

Components

Configure
System
Settings

Inspect
Available

APIs
Write

Application

Add Software
Components

Export
Application

and New Components

Create
Manifest

Below is a list of some of
the LAT core commands:

• appsdk genrpm: Uses
yaml file to build RPM
from any files, including
third-party or original
modified content

• appsdk gencontainer:
Uses yaml file to create
a container from RPM

• appsdk geninitramfs:
Uses yaml file to create
a create customized
boot loader and/or
deployments

• appsdk genimage:
Uses yaml file to create
an image that can
contain any content
from above, as well as
deployment and script-
ing; you can also use
an alternative initramfs
generated above

• appsdk gensdk:
Requires a full build
with the initial SDK;
yaml allows rolling
all inputs above into
a new set of artifacts
with a new SDK

5

Let’s compare the Wind River Linux source-based
distribution builder with the Wind River Linux
Distro binary distribution and consider why a cus-
tomer might choose one over the other.

With the source-based approach, a customer can have customized
hardware enablement as well as full control over the kernel configura-
tion, with all changes tracked for full reproducibility. This might require
a team of capable Linux builders as well as a tightly integrated platform
and application team. SDKs can be created, and the result is a fully cus-
tomized and tailored Linux.

With the binary distribution, a quicker time-to-market can be achieved at
a more economical price point. And because no special requirements are
needed, minimal changes can be made to Linux, with limited experience
necessary. That allows the solution development team to focus on the
application and results in a “good enough” Linux-based solution. The
binary distribution is based on Wind River Linux LTS 21 – LTS kernel 5.10
and is designed to support creation of customized Linux images in just
a few minutes. A customer has the flexibility to customize their own pur-
pose-built Linux while receiving support for a growing variety of Arm and
X86 platforms. OSTree automatic updates and the absence of end-device
royalties add simplicity while reducing cost.

Embedded solution developers need a quick and easy purpose-built
embedded Linux for their edge solutions. Wind River Linux Distro
provides a solution, allowing developers to create a purpose-built Linux
without the time and expense of starting from scratch.

Download
Wind River Linux
Distro today and
get started build-
ing your product:

www.windriver.
com/products/
linux/download

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices
since 1981 and is in billions of products. Wind River is accelerating the intelligent transformation of mission-critical edge systems
that demand the highest levels of security, safety, and reliability.

© 2022 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are
registered trademarks of Wind River Systems, Inc. Rev. 04/2022

Source-Based vs.
Binary Distribution

https://www.windriver.com/products/linux/download
https://www.windriver.com/products/linux/download
https://www.windriver.com/products/linux/download
https://www.windriver.com/products/linux/download

