
Protecting Can’t-Fail Embedded Systems
from Tampering, Reverse Engineering, and
Other Cyberattacks

10 Properties of Secure
Medical Systems

www.windriver.com

1

Security requirements for medical software present a grow-
ing challenge as devices move from stand-alone systems or
private networks into cloud operations. Intelligent systems
offer rewards, but they also introduce risks. Among these
risks are the increasing efforts of outside actors to exploit
medical devices as entry points for ransomware and other
attacks. Worse yet, an attacker may try to use a compro-
mised device to go further, pivoting from one exploited

subsystem to another and jeopardizing patient health while
causing further damage to the device company’s network,
mission, and reputation.

This white paper covers the most important security design
principles that, if adhered to, give you a fighting chance
against any attacker who seeks to gain unauthorized
access, reverse engineer, steal sensitive information, or
otherwise tamper with your embedded medical system.

It’s Not a Fair Fight

DESIGN PRINCIPLE BRIEF EXPLANATION IMPLEMENTATION EXAMPLES

1. Data-at-Rest Protection Software, data, and configuration files are protected when stored in nonvolatile
memory, typically through means of encryption. Keys stored in security hardware.

Full-disk encryption
File encryption
TPM / HSM

2. Authenticated and/or Secure Boot Software (including firmware and configuration data) will be authenticated and/or
decrypted before use.

TXT, BootGuard
UEFI SecureBoot
Application whitelisting

3. Hardware Resource Partitioning Hardware computing resources (processor cores, cache, memory, devices, net-
works) will be segregated to provide independent functions to the maximum degree
possible.

Memory management unit / Paging
Multi-core / Multi-socket
Cache allocation technology
Resource director technology
Total memory encryption (TME / MKTME)

4. Software Containerization & Isolation Software applications will be well defined, self-contained, containerized, and
isolated.

Process address spaces / Virtual memory
Docker / Containers
Virtualization / Separation kernel / Hypervisor

5. Attack Surface Reduction Minimize dependencies / Trusted computing base
Minimize codebase
Limited and well-defined interfaces

Code removal
Network and application firewalls
Software Guard Extensions (SGX)

6. Least Privilege & Mandatory Access Control Users and applications will be provided only the minimal set of privileges/access
necessary to function using non-bypassable mandatory access control (MAC).

SELinux / AppArmor / SMACK
SECCOMP / chroot
XSM / FLASK (Hypervisor)

7. Implicit Distrust & Secure Communications Communications with external sources will be expressly denied until the remote
source can be authenticated. Data in transit will be encrypted.

SSL / TLS
Identity and certificate management

8. Data Input Validation Any and all data received from untrusted sources (network, file, IPC) should be
validated before being passed into software applications.

Data format filters
Cross-domain guards

9. Secure Software Development, Build Options, &
OS Configuration

Software applications and OS kernel shall be compiled and configured with all
available security options enabled and enforced.

Type and memory-safe languages (e.g., Rust)
Build parameters (FORTIFY_SOURCE, NX)
Kernel configuration (e.g., signed drivers, ASLR)

10. Integrity Monitoring & Auditing The system will perform ongoing integrity monitoring and audit logging of
security-relevant events.

Continous memory hash verification
Audited

When attacking an intelligent edge medical system, it takes only one vulnerability
to put patient health at risk.

The beauty of these 10 principles is that they can be layered together into a cohesive set of countermeasures that achieve
a multiplicative effect, making medical device exploitation significantly more difficult and costly for the attacker.

2

Data-at-Rest Protection

Your applications, configurations, and data aren’t
safe if they’re not protected at rest. Period.

You can protect your medical applications and data at rest in one of
two ways:

1.	 Prevent the attacker from gaining access to this information in the first place.

2.	 Make it impossible for the information to be understood.

The connected medical devices market reached $28.24 billion in 2020,
and it is expected to grow at a CAGR of 18.92% by 2026.1 And that
means that the medical industry is a prime target for cyberattack. The
SANS Institute reported that, as of 2020, 94% of health care organiza-
tions reported being cyberattack victims.2 This includes attacks on
medical devices, medical infrastructure, and patient data. Unless you
can guarantee that your system is physically inaccessible, preventing
attackers from ever gaining access is an exceedingly tall order.

This leaves us with method two: Make it impossible to understand the
information.

Though there are many ways to obfuscate or otherwise garble your
data and applications to make them more difficult to understand, most
aren’t worth the effort and are often trivially bypassed or subverted.

When an attacker has access to your software or data, it’s only a matter
of time before they figure out how your system works. However, if your
applications and data are encrypted with proven cryptographic algo-
rithms and the decryption key is not accessible to the attacker, it’s game
over. At the very least, you have forced the adversary to use a more intru-
sive method of attack to achieve their objective.

Properly implemented, encryption at rest is designed to protect the
confidentiality of your sensitive medical data from physical access.

Encryption can also protect the integrity of the software components
on a device. For example, encrypted storage volumes can prevent at-
tackers from injecting malware, modifying configurations, or disabling
security features on a device.

Using certified and/
or industry standard
crypto-algorithms
such as AES, RSA,
ECC, or SHA will
help protect your
data at rest and
prevent an attacker
from gaining ac-
cess — as long as
you keep the secret
crypto-keys out
of reach when the
system is powered
off (hint: tamper-
resistant hardware),
during boot, and
throughout runtime
operation.

1 “Connected Medical Device Market: Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026),”
 Mordor Intelligence, 2021
2 Patricia A.H. Williams and Andrew J. Woodward, “Cybersecurity Vulnerabilities in Medical Devices: A Complex
 Environment and Multifaceted Problem,” PubMed Central, U.S. NIH, 2015

https://www.mordorintelligence.com/industry-reports/connected-medical-device-market#faqs
https://www.mordorintelligence.com/industry-reports/connected-medical-device-market#faqs
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516335/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516335/

3

Your system isn’t safe if you can’t prove that, while
booting up, your code wasn’t manipulated, modified,
or replaced with an alternate, malicious version.

Yes, handing off control from the hardware to the software is a compli-
cated dance that any medical embedded system conducts to get up and
running. But that doesn’t mean it’s indecipherable.

Hundreds — maybe thousands — of vulnerabilities exist in system boot
sequences that, if left unprotected, can and will be exploited by a would-
be attacker to gain access to your software and compromise applications
and data. For example, boot attacks are the most common method used
to “root” popular mobile devices and enable unauthorized applications
and system modifications. A well-engineered secure boot sequence
helps protect against system compromise during startup.

Many secure boot technologies exist, including:
1.	 UEFI Secure Boot:3 Free for many platforms, taking static root-of-trust mea-

surements and providing validation of kernel command-line arguments

2.	 Grub Secure Boot:4 With options for validating kernel, initramfs, and com-
mand line, and also integrating with UEFI secure boot

3.	 Intel TXT/tboot:5 Can provide authentication and encryption during a mea-
sured launch and also prevent certain advanced hardware attacks

4.	 uboot: Leverages platform-specific bits (i.e., fuses) to perform a verified
boot using encryption and authentication

5.	 Commercial products, such as Wind River Titanium Security Suite's
Secure Boot.6

Many other forms of secure boot for SoCs leverage platform-specific bits
and perform verified or measured launches of OS code using encryption
and authentication.

Whichever secure boot technology you are using, be sure it's as strong
as these examples to ensure that your hardware kicks off only the
intended and authentic software and not an attacker’s malicious code.

Secure Boot

SECURE BOOT
SEQUENCE

1.	 Encrypted at rest

2.	 Measured boot
(Unlock key material)

3.	 Decrypt OS

4.	 Secure at runtime

3 www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
4 ruderich.org/simon/notes/secure-boot-with-grub-and-signed-linux-and-initrd
5 software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-
 technology-intel-txt-enabling-guide.html
6 www.starlab.io/titanium-product

http://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
http://ruderich.org/simon/notes/secure-boot-with-grub-and-signed-linux-and-initrd
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
http://www.starlab.io/titanium-product

4

Hardware Resource
Partitioning

If your software stack is allowed unconstrained
access to every hardware component on your
medical system, then an attacker can potentially
leverage that same access to catastrophic effect.
It’s like trying to host a safe event during a pandemic — just one infected
person can jeopardize everyone’s health.

Constraining software workloads to particular hardware components
(CPU cores, cache, memory, devices, etc.) leads to a cleaner, more
straightforward system configuration. It also happens to provide very
important security properties.

Traditional embedded OSes have limited protections between process-
es and application/system dependencies, and since the OS kernel is
similarly not separate from the individual device driver services, the attack
surface is large and enables a single exploit to compromise the integrity
of the entire system.

An architecture in which components are isolated via strong, hard-
ware-enforced boundaries enables defense in depth, especially if
interfaces between separated components are tightly controlled. Any
vulnerabilities exploited in one application remain constrained to that
application. Thus they cannot spill over into other (isolated) components
to disrupt the entire system. Furthermore, strict partitioning and isolation
can prevent co-execution vulnerabilities, which is an enabling factor for
exploit families such as Spectre and Meltdown.7

Separating components via hardware partitioning improves the overall
resiliency of the system, as one component can no longer directly or
indirectly affect another component.

Additionally, partitioning the system into discrete components reduces
the collective attack surface and increases overall system security by
reducing and/or minimizing privilege escalation, preventing resource
starvation and denial of service, mitigating side channel and/or timing
attacks, and laying the groundwork for future fault-tolerant application
approaches.

Good security
practice requires
reasoning through
potential attacks
at every level
of the system,
understanding and
questioning design
assumptions, and
implementing a
defense-in-depth
security posture.

7 meltdownattack.com

https://meltdownattack.com/
http://meltdownattack.com

5

Just as one rotten apple can spoil the whole barrel,
one insecure piece of code, if not properly isolated,
can compromise the entire system.

This is possible because a vulnerability exploited in one piece of code
enables the attacker to run arbitrary commands with the same set of
privileges as that application — possibly writing to memory or devices
where other software components reside. Thus, an initial exploit can
quickly gain the attacker unrestricted access to the entire system or,
even worse, long-term persistence.

Containerization of code helps mitigate such attacks, preventing an
exploit in one component from affecting another component.

To mitigate the effects of software exploitation attacks, the defender
should containerize, sandbox, and isolate different system functions
into separate enclaves. This approach starts at the system architecture
stage, ensuring that applications and subcomponents are well defined
and self-contained with clearly understood and enforced boundaries.
Next, data flows should be analyzed to ensure that inter-component
interactions are known and can be controlled.

Containerization can be accomplished at multiple levels within the
software stack, including separate name spaces (i.e., Docker8), virtual
machines, separation kernels, and/or hardware-enforced memory
spaces. When implemented correctly, even exploited software remains
constrained to just its process address space, VM, or container, thereby
limiting the reach of an attacker and preventing the unintended escala-
tion of access across system components.

Software Containerization
and Isolation

Software applica-
tions will be well
defined, self-con-
tained, isolated, and
containerized with
these elements:

•	 Process address
spaces

•	 Virtual memory

•	 Docker

•	 Containers

•	 Virtualization

•	 Separation kernel

•	 Hypervisor

8 www.docker.com

http://www.docker.com

6

The more code you deploy, the more opportunity an
attacker has to find an entry point into the system.

Recall that an attacker has to exploit only one vulnerability to be suc-
cessful, while the defender must protect against all vulnerabilities. Thus
every additional line of deployed code potentially introduces software
bugs that an attacker can exploit for their nefarious reasons.

It’s a losing battle.

The best approach, then, is to reduce the attack surface by removing
code and interfaces that are not absolutely required.

For example, instead of mindlessly deploying a monolithic Linux distribu-
tion onto an intelligent edge device, cut out the drivers, features, and code
you don’t actually need. A zero-day attack on a graphics card driver can’t
be successful on a system that doesn’t include that driver to begin with.

Similarly, even a known vulnerable service cannot be exploited if the
service has been disabled or the interface is removed.

Attack Surface
Reduction

Check After Changes

“Whenever software
is changed, a valida-
tion analysis should
be conducted not
just for validation
of the individual
change but also
to determine the
extent and impact
of that change on
the entire software
system. Based on
this analysis, the
software developer
should then conduct
an appropriate level
of software regres-
sion testing to show
that unchanged but
vulnerable portions
of the system have
not been adversely
affected.”

— U.S. Food and Drug
 Administration 10

88%
of surveyed medtech leaders in the U.S. said they
did not think their companies were prepared to
prevent cyberattacks.9

9 Maria Fontanazza, “IoMT, Connected Devices Introduce More Cyber Threats into Med
 Tech and Healthcare Organizations,” MedTech Intelligence, July 12, 2021
10 General Principles of Software Validation; Final Guidance for Industry and FDA
 Staff, U.S. Department of Health and Human Services, Food and Drug
 Administration, January 2002

https://www.medtechintelligence.com/news_article/iomt-connected-devices-introduce-more-cyber-threats-into-medtech-and-healthcare-organizations/%20
https://www.medtechintelligence.com/news_article/iomt-connected-devices-introduce-more-cyber-threats-into-medtech-and-healthcare-organizations/%20
https://www.fda.gov/files/medical%20devices/published/General-Principles-of-Software-Validation---Final-Guidance-for-Industry-and-FDA-Staff.pdf
https://www.fda.gov/files/medical%20devices/published/General-Principles-of-Software-Validation---Final-Guidance-for-Industry-and-FDA-Staff.pdf
https://www.fda.gov/files/medical%20devices/published/General-Principles-of-Software-Validation---Final-Guidance-for-Industry-and-FDA-Staff.pdf

7

Least Privilege and
Mandatory Access Control

The principle of least privilege says that your
systems’ software components should only be
granted the minimal privileges necessary to do
their job, and nothing more.
Applications (and users/operators) should only have access to the mini-
mum set of interfaces and services necessary for their job.

Too often software developers and system engineers take the short-
cut — inadvertently (or even explicitly) granting excessive privileges to
applications, with an assumption of trusted operator and/or application
behavior. That assumption will be quickly invalidated by the attacker.

Instead, intelligent edge systems should be built using mandatory
access controls (MAC). Unlike discretionary access controls (which can
be modified at will by users and administrators), systems built on man-
datory access control quantify access grants and restriction policies
during system design — controls that are always enforced in the fielded
device. There is no user or administrative way to bypass or disable the
security controls within the fielded device.

Even if an attacker is successful in compromising a subcomponent
of the system or gains root-level access, they will not have a way to
modify or disable the security settings of the device. When combined
with least privilege, mandatory access controls greatly constrain the
attacker’s freedom to maneuver and block the ability to modify, disable,
or disrupt system services.

Properly implemented mandatory access control policies do not
interfere with normal system operation, and they still allow the system
to work as designed and intended. The policies can also be updated in
a secure and controlled manner by the system implementer. However,
mandatory access control intentionally prevents systems from operat-
ing in unintended ways, which is a highly desirable property in embed-
ded computing.

If you need to de-
ploy that graphics
driver for functional-
ity, then go for it.

Just be careful not
to allow unautho-
rized components
to access it if not
absolutely neces-
sary. This principle is
known as least privi-
lege and mandatory
access control.

8

Implicit Distrust and Secure
Communications

Communication received on your system from
external sources should be expressly denied until
the remote source has been authenticated.

In other words, a secure system doesn’t let just any other system talk to
it; it forces external systems to prove themselves. The starting point for
secure communication should be default-deny.

More so, just as it is better to share your credit card information only to
those you trust, in a closed room where no one else is around to hear,
your system should enforce secure communication even after the other
party has been authenticated.

That typically means data in transit will be encrypted.

Luckily, both of these properties can be implemented with widely used,
easily accessible, proven encryption communications protocols, such
as SSL and TLS11 with identity and certificate management. Of course,
any time crypto is involved, it raises the question of how you plan to pro-
tect those TLS keys and certificates (hint: tamper-resistant hardware).

By implementing mutual authentication and encryption, you’ll have
more certainty that you are only communicating with trusted entities
(not the attacker), and that nobody else can eavesdrop on what is
being communicated.

Once you are able to securely transmit information from one system to
another, you can focus on validating that information to prevent mali-
cious data input attacks.

of all IoT device traffic — including
medical device traffic — is left
unencrypted.12

11 www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
12 IoMT, Connected Devices Introduce More Cyber Threats into MedTech and Healthcare
 Organizations,” MedTech Intelligence, July 12, 2021

98%

http://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
https://www.medtechintelligence.com/news_article/iomt-connected-devices-introduce-more-cyber-threats-into-medtech-and-healthcare-organizations/
https://www.medtechintelligence.com/news_article/iomt-connected-devices-introduce-more-cyber-threats-into-medtech-and-healthcare-organizations/

9

A secure software architecture does not make as-
sumptions about the acceptability of a given input
and will validate the format and content of that
input before allowing it to be processed by the rest
of the system.

Data entering a system via any interface — whether a sophisticated MRI
machine or a patient’s wearable fitness-tracking device — can become
a vector for attack, exploiting software vulnerabilities to gain unautho-
rized access or corrupting system or application memory to create a
denial of service.

In other words, inputs from a variety of external sources, such as
sensors, networks, etc., should be subject to data input validation
before use.

Additional vetting of user input (where user means an actual human
user, a peripheral user, or a machine operator) is required. But all devices
should inspect the conformance of messages to a prescribed data
standard as they are passed from device to device.

Furthermore, because any component of the system could become
compromised at any point, and thus any message may be maliciously
crafted and sent by an attacker, a secure software architecture operates
on the principle of mutual distrust.

Components within the system must prove their trustworthiness
through a continuous (or at least frequent) authentication step. Further-
more, authentication must expire periodically and be reaffirmed.

Device-to-device authentication is often enforced during network forma-
tion and at random times thereafter. Message signing and verification are
typically included in all messages between authenticated devices.

Validating data before use helps to ensure that external inputs cannot
unintentionally interrupt or maliciously exploit system functionality
and lead to compromise of the system.

Many developers
fail to imagine how
a malicious attacker
may intentionally
craft malformed
inputs that are de-
signed to cause the
software to mal-
function.

Data Input
Validation

10

Secure Development,
Build Options, and
System Configuration

Adding some security features is as simple as con-
figuring your build options correctly.

You’ve probably heard of a buffer overflow attack.13 It’s a common
attack aimed at overwriting memory regions with malicious code. Many
compilers, by simply configuring them correctly, can now identify
whether such an attack is possible by analyzing your code long be-
fore it’s deployed.

Of course, other build options can be set to warn you (or error out) on
many types of potential security14 issues and also provide security
enhancements, such as:

1.	 Detection of signed/unsigned conversions

2.	 Warning of uses of format functions that represent possible
security problems

3.	 64-bit address space layout randomization

4.	 Compilation of code with unintended return addresses

5.	 Mitigated variants of Spectre

6.	 Defeat of stack-smashing attacks

7.	 Protection for the stack and heap against code execution

8.	 Enablement of code instrumentation of control-flow transfers

These are just a few of the available security measures you can imple-
ment. Even better, if you have the ability to specify the programming
language for your system, you can eliminate entire classes of software
vulnerability. For example, the popular Rust programming language can
eliminate memory-safety and type-safety programming concerns.

Secure software build options and system configuration to validated
standards are low-effort, bare minimum requirements that go a long
way toward preventing attackers from running circles around your
other cyberdefenses.

Start with Requirements

“Software require-
ment specifications
should clearly iden-
tify the potential
hazards that can
result from a soft-
ware failure in the
system, as well as
any safety require-
ments to be imple-
mented in software.
The consequences
of software failure
should be evaluated,
along with means of
mitigating such fail-
ures (e.g., hardware
mitigation, defense
programming, etc.).
From this analysis, it
should be possible
to identify the most
appropriate mea-
sures necessary to
prevent harm.”

— U.S. Food and Drug
 Administration15

13 www.imperva.com/learn/application-security/buffer-overflow
14 security.stackexchange.com/questions/24444/what-is-the-most-hardened-set-of-options-for-gcc-
 compiling-c-c
15 General Principles of Software Validation; Final Guidance for Industry and FDA Staff, U.S.
 Department of Health and Human Services, Food and Drug Administration, January 2002

http://www.imperva.com/learn/application-security/buffer-overflow
http://security.stackexchange.com/questions/24444/what-is-the-most-hardened-set-of-options-for-gcc-compiling-c-c
http://security.stackexchange.com/questions/24444/what-is-the-most-hardened-set-of-options-for-gcc-compiling-c-c
https://www.fda.gov/files/medical%20devices/published/General-Principles-of-Software-Validation---Final-Guidance-for-Industry-and-FDA-Staff.pdf
https://www.fda.gov/files/medical%20devices/published/General-Principles-of-Software-Validation---Final-Guidance-for-Industry-and-FDA-Staff.pdf

11

Integrity Monitoring
and Auditing

You can’t take action against an attacker if you
don’t know when your system is being attacked.

Integrity monitoring and auditing are important techniques for knowing
when a medical device is being attacked and/or whether it has been
compromised. These warnings give you the potential to stop an attack-
er before it is too late, or at least learn how they exploited your system
and what they were able to accomplish.

Typical techniques include network and OS-level anomaly detection,
system log monitoring, and scanning for known malware. They allow
the system operator to recognize when some portion of the system
may be compromised and take action against the attacker, revoke trust
accordingly, or both.

Furthermore, auditing is a requirement of many compliance regulations,
as the techniques help organizations detect unauthorized modifications
to important files, data, or other aspects of your system. HIPAA, NIST,
FISMA, NERC, and PCI all require or recommend integrity monitoring
and auditing for critical applications and data on distributed systems.

Properly implemented, auditing and monitoring allow you to know
when you’ve been attacked, help quantify the damage, and enable you
to recover more quickly — preventing lost time, revenue, and damage
to your reputation.

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the
safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the
digital transformation of mission-critical edge systems that demand the highest levels of security,
safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and
Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 10/2021

Wind River plat-
forms serve as a
trusted foundation
so you can innovate
securely and protect
your device against
current and future
threats.

Wind River technology is in more
than 2 billion devices throughout
the world.

2B+

12

No One Property to
Rule Them All

500 Wind River Way, Alameda, CA 94501, USA
Toll-free: 800-545-9463

10 Properties of
Secure Intelligent
Edge Systems

Data-at-rest protection

Authenticated and/or
secure boot

Hardware resource
partitioning

Containerization
and isolation

Attack surface reduction

Least privilege and man-
datory access control

Implicit distrust and
secure communications

Data input validation

Secure development,
build options, and OS
config

Integrity monitoring and
auditing

Unfortunately, there is no one security property to
rule them all.

There’s no single tip or trick or technology or technique that can imme-
diately and permanently prevent an attacker from compromising your
system. It takes a combination of many techniques to do that.

Start with these 10 properties in order to build security into the design,
implementation, and operation of your intelligent edge medical system:

1.	 Encrypt sensitive applications and data.

2.	 Ensure that your firmware, OS, and config settings are authentic
before use.

3.	 Separate system functions into distinct enclaves.

4.	 Sandbox exploits and prevent attackers from expanding their reach.

5.	 Reduce the amount of code and interfaces that an attacker will
have the opportunity to exploit.

6.	 Ensure that software components can only do what they were
intended to do, and nothing more.

7.	 Secure data in transit and expressly deny external communication
unless authenticated.

8.	 Do not implicitly trust data received from untrusted sources.

9.	 Ensure that software applications are compiled and configured
with all available security options enabled and enforced.

10.	Detect and take action that protects the system against relevant
security events.

If all of these properties are in place, implemented properly on your
system, you’ll have a fighting chance against any attacker who seeks
to exploit your system, steal your IP, or impact your brand reputation.

Contact us if you are interested in learning how these 10 properties can be applied to your use case and what technologies
Star Lab (a Wind River company) can bring to quickly and easily meet your security requirements and protect your system
against the full spectrum of reverse engineering and cyberattacks.

Appendix

