
Approaches, Methods, and Tools

Security and the
DevSecOps Platform

SECURITY AND THE DEVSECOPS PLATFORM

2 | White Paper2 | White Paper

INTRODUCTION

Security spans many kinds of technologies, markets, and devices. It’s
becoming more common to enable hardware-based security features
through use of powerful software and embedded firmware across several
platforms, especially PC, Intel® devices, and Arm®-based processors, as well
as throughout the various stages of a product’s lifecycle.

As development processes shift to find new, creative, innovative ways to
protect sensitive functions, hackers and malicious users also find new ways
to infiltrate source code and even development environments and code
repositories. This continues to happen at all levels, even government-based
entities. Developers must now create code with security in mind during all
phases of development and operations. This is called DevSecOps.

During the beginning phase of development, a security assessment should be
conducted to identify which security features are needed. Here, designers will
identify assets and their vulnerabilities, create a list of security implementations
to protect the asset from each vulnerability or group of vulnerabilities, and
create another list of security-related events that should be logged in the event
of a breach or system security failure.

The developer should always consider the many standard security
specifications, guides, and reference designs that exist. For this particular
article, though, the focus will be on the following specifications:

•	 Committee on National Security Systems Policy 15 (CNSSP 15)

•	 Recommendation for Key Management (NIST 800-57)

•	 Security and Privacy Controls for Federal Information Systems and
Organi-zations (NIST 800-53)

•	 Zero Trust Architecture (NIST 800-207)

TABLE OF CONTENTS

Introduction . 2
How Secure Should Your System Be? . 3
DevSecOps Technologies and Privileges . 4
How to Secure a DevSecOps Layout and Its Components . 4
The Importance of DIE Principles and Pen Testing . 5
Conclusion . 5

SECURITY AND THE DEVSECOPS PLATFORM

3 | White Paper

ASSET
UNAUTHORIZED

ACCESS USE DISCLOSURE DISRUPTION MODIFICATION DESTRUCTION

REPOSITORIES X X X X

SOFTWARE
COMPONENTS X X X

BUILD TOOLS X X X

CONNECTIVITY X X X X

CONFIGURATION X X X X

PERSISTENT
STORAGE X X X X X

EVENT LOGS X X X X X

HSM X X X X X X

HOW SECURE SHOULD YOUR SYSTEM BE?

In security, there’s often the question of how secure your system

should be, or what kind of “security strength” should be used. This

strength is defined as a number associated with the amount of work

that is required to break a cryptographic algorithm, represented in

bits.

As described in NIST 800-57 (Part 1) and CNSSP 15, a security

strength of 128 bits is acceptable. It is worth noting, though, that

as quantum computing is becoming more practical, this estimate

stands to change a great deal in the very near future.

Figure 1 represents a typical U.S. Department of Defense (DoD)

DevSecOps environment, showing the user interface, repositories,

and flow of data from the dev environments to test, integration, and

release. This configuration can be scaled with native cloud or hybrid

cloud environments, which ensures that security principles can be

included and continuously integrated throughout the course of the

project.

A list of some of the key assets of this environment can be derived

from the diagram shown above, including repos, dev, and test

environments; build tools; connectivity; configuration of each

component; persistent storage; and event logs. Once the assets are

identified, an assessment of their vulnerabilities must be performed.

The relative threat of information security to these assets includes a

variety of unauthorized uses, such as access, disclosure, disruption,

modification, and destruction.

Figure 2 shows a table highlighting some key areas that might require

additional security features to help mitigate these threats.

Figure 2. Matrix of DevSecOps assets and associated threats

Figure 1. DoD DevSecOps environment

Code,
scripts

IDEIDEIDE

Dev
Environment

Test
Environment

Dev
Environment

Pipeline 1

CI

CD

Release
Package

Pipeline 2

CI

Pipeline 3

CI

Code
Repo

Local
Artifact
Repo

Released
Artifact

Repo

SOFTWARE FACTORY

Integration &
Pre-Production
Environment

Software Factory Pipeline

Software Factory Tools Pipeline Control

Data Flow Control Gate

Dev
Environment

Test
Environment

Test
Environment

SECURITY AND THE DEVSECOPS PLATFORM

4 | White Paper

DEVSECOPS TECHNOLOGIES AND PRIVILEGES

It’s important to consider which technology should be used to

protect these vulnerabilities, as well as the capabilities associated

with that technology. This starts with the hardware security module

(HSM), which is the root of trust for the DevSecOps environment.

The HSM is a purpose-built, cryptographic provider including code

signing for both symmetric and asymmetric keys and is tightly

controlled, requiring two-person authorization for any changes

made. It’s important to have certificate revocation services

implemented within the environment and a well-configured key

hierarchy in place that supports frequent certificate rotation and

RSA-4096 keys to meet the 128-bit security strength requirements.

Privilege must be managed at the associated levels. As the level

increases, the number of users with privileges should decrease.

At the DevSecOps access level (accounting for most users), VPN

credentials are needed. Above this are what’s called elevated users,

which require the same VPN credentials but with an added layer

of multifactor authentication, such as a time-based, one-time

password application. The most privileged users may require what’s

called two-person control, which aims to mitigate compromised

identities at the individual level.

HOW TO SECURE A DEVSECOPS LAYOUT AND
ITS COMPONENTS

A typical DevSecOps environment contains many components

involving communications that are not just encrypted but also

authenticated and authorized. The diagram shown in Figure 3

demonstrates an Istio service mesh layout containing proxies

(or sidecars) to front each service, thereby providing mutually

authenticated TLS connections and logging of each connection as

it occurs. Additionally, only a small set of cipher suites are allowed

(TLS_DHE_RSA_WITH_AES_256_GCM_SHA384(0x00,0x9F),

TLS_ECDHE_RSA_WITH_AES_256_GSM_SHA384(0xC0,0x30)).

During the development process, it’s important to apply the

same principles while building the environment. This includes

patched common vulnerabilities and exposures (CVEs) within

each component to ensure that mTLS communications are used

throughout the environment (including containers with no hard-

coded secrets or root privilege), that components are configured

to industry standards, and that the host machine components are

patched and secured.

Additionally, all components within the DevSecOps environment

must generate security logs while the security information and

event management (SIEM) system processes the logs, determines

the appropriate response, and confirms that the security policy of

the environment is maintained. Protecting these log files is critical,

as it can show the hacker what is (and what isn’t) being monitored.

Figure 4 shows a diagram from the NIST 800-207 publication on

zero-trust architecture. The diagram has been annotated on the

outside, mapping the technologies to the individual components

that must work together to enable a zero-trust architecture.

CVE scanning and mitigation isn’t enough for vulnerability man-

agement. All components and their versions must be tracked, and

because there are so many (hundreds), tooling is required for assis-

tance. Parsing repositories of the logs can be used to make sure all

components are identified, while the threat intelligence feed helps

monitor how the current threats impact the component being used in

the environment. Figure 5 shows a layout of key activities that must

work together to form a solid vulnerability management capability.

Figure 3. Istio service mesh

Data plane traffic

Certificate

Local authorization

Control plane traffic

Key:

Service A

Proxy

mTLS

Service B

Proxy

mTLSmTLS

Ingress Egress

JWT
+ TLS
mTLS

JWT
+ TLS
mTLS

HTTP, gRPC, TCPAPIs
Content

External
API

Data Plane

Control Plane

Certificate
authority

Network
configuration

Authentication
policies

Authorization
policies

API server
configuration

Control Panel Interface

Istio Mesh

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the digital
transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 09/2021

SECURITY AND THE DEVSECOPS PLATFORM

THE IMPORTANCE OF DIE PRINCIPLES AND PEN TESTING

Incorporating the DIE model during design can greatly help with

creating a robust, secure environment. These principles can be

broken down as follows:

•	 Distributed: Multiple systems support the same overarching goal
•	 Immutable: The infrastructure doesn’t change after it’s deployed
•	 Ephemeral: The infrastructure has a short lifespan

Enabling a short container lifespan supports simplified distribution of

updated secrets without requiring a container restart or ingestion pro-

cessing, while also incorporating short-lived certificates that minimize

the need for revocation services and key compromise remediation.

A cloud-native DevSecOps environment affords a major advantage

over a static development environment. Creating a new, separate

instance of the DevSecOps environment within a cloud service

provider can remove any concern during third-party pen testing if a

crash occurs.

In this arrangement, four levels of pen testing can be supported.

Figure 6 shows the three main levels of testing for permissions (in

addition to outside attackers with no access). Having an external

vendor that specializes in vulnerability discovery provides major

value in ensuring the security of the DevSecOps environment.

CONCLUSION

As security testing becomes incorporated into the development

lifecycle, it’s important to make sure that the development itself is

secure. Many technologies and related capabilities exist that can be

used as the foundation for securing the DevSecOps environment.

These include the use of an HSM, ID management, mutually

authenticated and encrypted communication, a series of scanning

tools, security event logging, and zero-trust network principles.

Security requires constant monitoring for vulnerabilities and

updates, while application of the DIE principles shortens the lifespan

of each container in the environment, limiting the time that a hacker

has access to the components.

Finally, validation with third-party pen-test vendors provides a

multifaceted security evaluation of the environment based on

user privilege level to verify the security policy of the DevSecOps

environment.

Figure 4. Zero-trust architecture

Figure 6. Levels of permission for third-party pen testing

Figure 5. Vulnerability management capability and its associated activities

IdAM, PAM, Istio

Data Plane

Control Plane

Subject System Enterprise
Resource

Untrusted Trusted

VPN, Istio

Vulnerability
Management

CDM
System

Numerous Industry
Compliance

PAM, Istio
Data

Access
Policy

Vulnerability
Management

Threat
Intelligence

Event
Logs

Activity
Logs

Policy Decision Point

Policy Engine

Policy
Administrator

Policy
Enforcement

Point

HSM + CAPKI

Identity
Management

ID
Management

SIEMSEIM
System

OUTSIDE ATTACKER

STANDARD

MALICIOUS INSIDER
ELEVATED

PRIVILEGE ESCALATION

PRIVILEGED

DevSecOps Environment Permissions

Vulnerability
Management

Capability

Asset Identification
and Cataloging

CVE Identification and
Remediation

Threat Intelligence
Feeds

Repositories
Log Files

CVE Scanning Indications of Compromise
New Malware
Software Flaws

https://www.windriver.com/products/vxworks/evaluation

