
Edge	Computing
Next	Steps	in	Architecture,	Design	and	Testing
Edge	Computing:	Next	Steps	in	Architecture,	Design	and	Testing

Introduction

While	edge	computing	has	rapidly	gained	popularity	over	the	past	few	years,	there	are	still	countless	debates	about	the
definition	of	related	terms	and	the	right	business	models,	architectures	and	technologies	required	to	satisfy	the
seemingly	endless	number	of	emerging	use	cases	of	this	novel	way	of	deploying	applications	over	distributed	networks.

In	our	previous	white	paper	the	OSF	Edge	Computing	Group	defined	cloud	edge	computing	as	resources	and	functionality
delivered	to	the	end	users	by	extending	the	capabilities	of	traditional	data	centers	out	to	the	edge,	either	by	connecting
each	individual	edge	node	directly	back	to	a	central	cloud	or	several	regional	data	centers,	or	in	some	cases	connected	to
each	other	in	a	mesh.	From	a	bird’s	eye	view,	most	of	those	edge	solutions	look	loosely	like	interconnected	spider	webs
of	varying	sizes	and	complexity.

In	these	types	of	infrastructures,	there	is	no	one	well	defined	edge;	most	of	these	environments	grow	organically,	with
the	possibility	of	different	organizations	owning	the	various	components.	For	example,	a	public	cloud	provider	might
supply	some	of	the	core	infrastructure,	while	other	vendors	are	supplying	the	hardware,	and	yet	a	third	set	of	integrators
are	building	the	software	components.	Trying	to	create	a	one	size	fits	all	solution	is	impossible	for	edge	use	cases	due	to
the	very	different	application	needs	in	various	industry	segments.	Interestingly,	while	cloud	transformation	started	later
in	the	telecom	industry,	operators	have	been	pioneers	in	the	evolution	of	cloud	computing	out	to	the	edge.	As	owners	of
the	network,	telecom	infrastructure	is	a	key	underlying	element	in	edge	architectures.

After	four	years,	while	there	is	no	question	that	there	is	continuing	interest	in	edge	computing,	there	is	little	consensus
on	a	standard	edge	definition,	solution	or	architecture.	That	doesn’t	mean	that	edge	is	dead.	Edge	must	be	by	its	very
nature	highly	adaptable.	Adaptability	is	crucial	to	evolve	existing	software	components	to	fit	into	new	environments	or
give	them	elevated	functionality.	Edge	computing	is	a	technology	evolution	that	is	not	restricted	to	any	particular
industry.	As	edge	evolves,	more	industries	find	it	relevant,	which	only	brings	fresh	requirements	or	gives	existing	ones
different	contexts,	attracting	new	parties	to	solve	these	challenges.	Now	more	than	ever,	edge	computing	has	the
promise	for	a	very	bright	future	indeed!

This	document	highlights	the	OSF	Edge	Computing	Group’s	work	to	more	precisely	define	and	test	the	validity	of	various
edge	reference	architectures.	To	help	with	understanding	the	challenges,	there	are	use	cases	from	a	variety	of	industry
segments,	demonstrating	how	the	new	paradigms	for	deploying	and	distributing	cloud	resources	can	use	reference
architecture	models	that	satisfy	these	requirements.

Challenges	in	different	industries

In	a	nutshell,	edge	computing	moves	more	computational	power	and	resources	closer	to	end	users	by	increasing	the
number	of	endpoints	and	locating	them	nearer	to	the	consumers	--	be	they	users	or	devices.	Fundamentally,	edge
computing	architectures	are	built	on	existing	technologies	and	established	paradigms	for	distributed	systems,	which
means	that	there	are	many	well	understood	components	available	to	create	the	most	effective	architectures	to	build	and
deliver	edge	use	cases.

This	section	will	guide	you	through	some	use	cases	to	demonstrate	how	edge	computing	applies	to	different	industries
and	highlight	the	benefits	it	delivers.	We	will	also	explore	some	of	the	differentiating	requirements	and	ways	to	architect
the	systems	so	they	do	not	require	a	radically	new	infrastructure	just	to	comply	with	the	requirements.

5G	Brings	You	the	Edge	or	Vice	Versa?

5G	telecom	networks	promise	extreme	mobile	bandwidth,	but	to	deliver,	they	require	massive	new	and	improved
capabilities	from	the	backbone	infrastructures	to	manage	the	complexities,	including	critical	traffic	prioritization.	The
network	needs	to	provide	both	high	throughput	and	low	latency	combined	with	efficient	use	of	the	available	capacity	in
order	to	support	the	performance	demands	of	the	emerging	5G	offerings.

Signaling	functions	like	the	IMS	control	plane	or	Packet	Core	now	rely	on	cloud	architectures	in	large	centralized	data
centers	to	increase	flexibility	and	use	hardware	resources	more	efficiently.	However,	to	get	the	same	benefits	for	user
plane	and	radio	applications	without	bumping	into	the	physical	limitations	of	the	speed	of	light,	compute	power	needs	to
move	further	out	to	the	edges	of	the	network.	This	enables	it	to	provide	the	extreme	high	bandwidth	required	between
the	radio	equipment	and	the	applications	or	to	fulfill	demands	for	low	latency.

The	most	common	approach	is	to	choose	a	layered	architecture	with	different	levels	from	central	to	regional	to
aggregated	edge,	or	further	out	to	access	edge	layers.	The	exact	number	of	levels	will	depend	on	the	size	of	the	operator
network.	The	central	locations	are	typically	well	equipped	to	handle	high	volumes	of	centralized	signaling	and	are
optimized	for	workloads	which	control	the	network	itself.	For	more	information	about	signaling	workloads,	reference
Chapter	2.1	of	the	CNTT	Reference	Model	under	Control	Plane	for	a	list	of	examples.	To	increase	end-to-end	efficiency,	it
is	important	to	pay	attention	to	the	separation	of	the	signal	processing	and	the	user	content	transfer.	The	closer	the	end
users	are	to	the	data	and	signal	processing	systems,	the	more	optimized	the	workflow	will	be	for	handling	low	latency
and	high	bandwidth	traffic.

file:///tmp/edge-computing/cloud-edge-computing-beyond-the-data-center?lang=en_US
https://github.com/lf-edge/glossary/blob/master/edge-glossary.md#aggregation-edge-layer
https://github.com/lf-edge/glossary/blob/master/edge-glossary.md#access-edge-layer
https://github.com/cntt-n/CNTT/blob/master/doc/ref_model/chapters/chapter02.md


To	describe	what	it	all	means	in	practice,	take	a	Radio	Access	Network	(RAN)	as	an	example.	Edge	architectures	require	a
re-think	of	the	design	of	the	Base	Band	Unit	(BBU)	component.	This	element	is	usually	located	near	a	radio	tower	site
with	computational	and	storage	capabilities.	In	a	5G	architecture	targeting	the	edge	cloud,	a	Cloud	RAN	(C-RAN)
approach,	the	BBU	can	be	disaggregated	into	a	Central	Unit	(CU),	a	Distributed	Unit	(DU)	and	a	Remote	Radio	Unit	(RRU)
where	the	DU	functionality	is	often	virtualized	(vDU)	with	close	proximity	to	the	users,	combined	with	hardware	offloading
solutions	to	be	able	to	handle	traffic	more	effectively.	The	illustration	of	the	above	edge	architecture	shows	how	the	CU
component	can	be	located	in	an	aggregated	or	regional	edge	site	while	the	vDU	would	be	located	in	the	edge	data
centers.	This	setup	allows	more	flexibility	in	managing	the	CU	and	DU	while	keeping	the	bandwidth	utilization	optimal,
fulfilling	the	increasing	user	demands.

These	architectural	changes	introduce	new	challenges	for	the	lifecycle	of	the	building	blocks:

Automation:	to	manage	tens,	hundreds	or	thousands	of	edge	nodes
Remote	provisioning:	allows	the	option	to	provision	cloud	infrastructure	through	WAN	connection	for	sites	at
remote	locations
‘Single	pane	of	glass’:	a	central	dashboard	to	monitor	the	edge	sites’	status	including	alarms	and	metrics
Remote	upgrade:	edge	sites	are	upgraded	remotely	with	compatibility	between	the	different	versions	of	the
software	throughout	the	whole	infrastructure
Resiliency:	the	ability	to	run	workloads	without	interruption	in	case	of	events	like	network	connection	disruption
between	data	centers

Content	Caching	at	the	Edge

Reducing	backhaul	and	latency	metrics	and	improving	quality	of	service	(QoS)	are	good	reasons	for	pushing	content
caching	and	management	out	to	the	network	edge.	A	caching	system	can	be	as	simple	as	a	basic	reverse-proxy	or	as
complex	as	a	whole	software	stack	that	not	only	caches	content	but	provides	additional	functionality,	such	as	video
transcoding	based	on	the	user	equipment	(UE)	device	profile,	location	and	available	bandwidth.

Content	delivery	networks	(CDN)	are	not	a	new	concept.	However,	the	creation	of	more	CDN	nodes	with	regional	points
of	presence	(PoP)	are	one	of	the	first	examples	of	what	can	now	be	considered	near-edge-computing.	With	the	explosion
of	video	streaming,	online	gaming	and	social	media,	combined	with	the	roll-out	of	5G	mobile	networks,	the	need	to	push
caching	out	to	the	far-edge	has	increased	dramatically.	The	"last-mile"	must	become	increasingly	shorter	to	meet
customer	demand	for	better	performance	and	user	experience	with	these	applications	that	are	highly	sensitive	to
network	latency.	This	is	encouraging	content	providers	to	migrate	from	a	traditional,	regional	PoP	CDN	model	to	edge-
based	intelligent	and	transparent	caching	architectures.



The	Pareto	Principle,	or	80-20	rule,	applies	to	video	streaming;	that	is,	80%	of	customers	will	only	consume	20%	of	the
available	content.	Therefore,	by	only	caching	20%	of	their	content,	service	providers	will	have	80%	of	traffic	being	pulled
from	edge	data	centers.	This	greatly	reduces	load	on	backbone	networks	while	improving	user	experience.

Caching	systems	in	edge	environments	need	to	take	end	user	device	(EUD)	proximity,	system	load	and	additional	metrics
as	factors	in	determining	which	edge	data	center	will	deliver	the	payloads	to	which	endpoints.	In	recent	prototypes,
smart	caching	frameworks	use	an	agent	in	the	central	cloud	that	redirects	content	requests	to	the	optimum	edge	data
center	using	algorithms	based	on	metrics	such	as	UE	location	and	load	on	the	given	edge	site.

Manufacturing	in	the	Digital	Era

Industry	4.0	is	often	identified	with	the	fourth	industrial	revolution.	The	concept	is	that	factories	are	using	computers	and
automation	in	new	ways	by	incorporating	autonomous	systems	and	machine	learning	to	make	smarter	factories.	This
paradigm	shift	includes	the	use	of	open	hardware	and	software	components	in	the	solutions.

Factories	are	using	more	automation	and	leveraging	cloud	technologies	for	flexibility,	reliability	and	robustness,	which
also	allows	for	the	possibility	of	introducing	new	methods	such	as	machine	vision	and	learning	to	increase	production
efficiency.	The	amount	of	data	processing	and	computational	power	needed	to	support	these	technologies	is	increasing
by	orders	of	magnitude.	Many	applications	move	the	data	from	the	factory	floor	to	a	public	or	private	cloud,	but	in	many
cases	the	latency	impacts	and	transmission	costs	can	lead	to	disruptions	on	the	assembly	line.	To	fulfill	the	high
performance	and	low	latency	communication	needs,	at	least	some	of	the	data	processing	and	filtering	needs	to	stay
within	the	factory	network,	while	still	being	able	to	use	the	cloud	resources	more	effectively.	Further	processing	of	the
data	collected	by	various	sensors	is	done	in	the	centralized	cloud	data	center.	Reusable	portable	microservices	located	at
the	edge	nodes	fulfill	tasks	that	are	part	of	new	vision	applications	or	deep	learning	mechanisms.

Similarly	to	the	telecommunication	industry,	manufacturing	also	has	very	strict	requirements.	To	fulfill	the	control
systems’	real-time	and	functional	safety	needs,	they	can	use	technologies	such	as	Time	Sensitive	Networking	(TSN)	on
the	lower	layers	of	the	architecture.

https://en.wikipedia.org/wiki/Industry_4.0
http://www.ieee802.org/1/files/public/docs2018/detnet-tsn-farkas-tsn-basic-concepts-1118-v01.pdf


Edge	Computing	for	Intelligent	Aquaculture

Aquaculture	is	similar	to	agriculture,	except	that	instead	of	domestic	animals,	it	breeds	and	harvests	fish,	shellfish,	algae
and	other	organisms	that	live	in	a	variety	of	salt	or	freshwater	environments.	These	environments	can	be	very	fragile;
therefore,	it	requires	high	precision	to	create	and	sustain	healthy	and	balanced	ecosystems.	To	increase	production	while
providing	a	safe	and	healthy	environment	for	the	animals,	automation	is	highly	desirable.	This	use	case	is	also	a	great
example	of	where	equipment	is	deployed	and	running	in	poor	environmental	conditions.

This	section	describes	shrimp	farms,	which	are	controlled	ecosystems	where	humans	and	automated	tools	oversee	the
entire	lifecycle	of	the	animals	from	the	larva	phase	to	the	fully	grown	harvestable	stage.	The	systems	even	follow	the
transportation	of	the	shrimp	after	they	are	harvested.	Like	agriculture,	the	environmental	conditions	highly	affect	the
animals’	conditions,	and	therefore	the	ponds	need	to	be	closely	monitored	for	any	changes	that	might	affect	the	well-
being	of	the	shrimp,	so	that	prompt	actions	can	be	taken	to	avoid	loss.

The	architecture	diagram	below	shows	a	detailed	view	of	the	edge	data	center	with	an	automated	system	used	to
operate	a	shrimp	farm.



Some	of	the	system	functions	and	elements	that	need	to	be	taken	into	consideration	include:

Environmental	monitoring,	including	data	collection	and	reporting	of	metrics	such	as:	outdoor	temperature	and
humidity,	water	quality,	PH	value	and	temperature,	dissolved	oxygen,	ammonia,	nitrogen,	and	nitrite
Video	surveillance	for	illegal	intrusion	detection	and	compliance	identification	of	staff	using	clothing	and	face
recognition
Smart	breeding	that	includes	automated	feeding	and	inventory	tracking	(food,	medicine,	auxiliary	materials,
disinfectant	and	so	forth)
Platform	traceability	to	query	and	display	the	entire	supply	chain	to	ensure	high	quality	of	aquatic	products

By	automating	and	connecting	these	farms,	the	solution	minimizes	the	isolation	that	exists	in	this	industry.	The	platform
provides	data	to	be	collected	and	analyzed	both	locally	on	the	farms	and	centrally	to	improve	the	environmental
conditions	and	prevent	mistakes	while	using	chemicals	like	auxiliary	materials	and	disinfectants.

With	more	computational	power	at	the	edge	data	centers,	it	is	possible	to	store	and	analyze	local	monitoring	data	for
faster	reaction	time	to	manage	changes	in	environmental	conditions	or	modify	feeding	strategy.	The	system	can	also	pre-
filter	data	before	sending	it	to	the	central	cloud	for	further	processing.	For	instance,	the	system	can	pre-process	water
quality	data	from	the	monitoring	sensors	and	send	structured	information	back	to	the	central	cloud.	The	local	node	can
provide	much	faster	feedback	compared	to	performing	all	operations	in	the	central	cloud	and	sending	instructions	back
to	the	edge	data	centers.

Digitalization	has	already	provided	much	innovation,	but	there	is	still	room	for	improvement,	such	as	reducing	the	labor
costs	related	to	collecting	data	and	improving	data	analysis	to	be	faster	and	more	reliable.	With	edge	computing
techniques,	it	is	possible	to	build	intelligent	aquaculture	infrastructure	in	order	to	introduce	artificial	intelligence	and
machine	learning	techniques	that	will	optimize	feeding	strategy	or	reduce	cost	by	minimizing	human	error	and	reacting
faster	to	machine	failures.

Technology	Considerations

As	can	be	seen	from	these	few	use	cases,	there	are	both	common	challenges	and	functionality	that	become	even	more
crucial	in	edge	and	hybrid	environments.	As	use	cases	evolve	into	more	production	deployments,	the	common
characteristics	and	challenges	originally	documented	in	the	“Cloud	Edge	Computing:	Beyond	the	Data	Center”	white
paper	remain	relevant.

The	highest	focus	is	still	on	reducing	latency	and	mitigating	bandwidth	limitations.	Further	similarity	between	the
different	use	cases,	regardless	of	the	industry	they	are	in,	is	the	increased	demand	for	functions	like	machine	learning
and	video	transcoding	on	the	edge.	Due	to	the	throughput	demands	of	applications	like	these	and	workloads	such	as
virtual	network	functions	(VNF)	for	5G,	various	offloading	and	acceleration	technologies	are	being	leveraged	to	boost
performance	through	software	and	hardware,	such	as:

Single-root	input/output	virtualization	(SR-IOV):	This	technology	allows	VMs	and	containers	to	share	direct	access	to
a	distinct	part	of	a	device,	such	as	network	adapters,	using	the	PCI	Express	interface.
Data	Plane	Development	Kit	(DPDK):	DPDK	allows	higher	network	packet	throughput	by	using	offloading	and

file:///tmp/edge-computing/cloud-edge-computing-beyond-the-data-center?lang=en_US
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://www.dpdk.org/


scheduling	techniques.	While	this	is	not	a	technology	specific	for	edge	it	is	crucial	to	enable	the	option	to	use	it	to
fulfill	strict	requirements	in	highly	resource	constrained	environments.
Non-uniform	memory	access	(NUMA):	This	is	another	method	to	increase	throughput	by	allocating	dedicated
memory	blocks	to	an	instance.	For	further	optimization	the	memory	block	is	local	to	the	CPU	core	on	which	the
instance	is	working.	For	very	small	edge	sites	this	could	become	a	bottleneck,	depending	on	the	edge	site	workload
mix.
SmartNics/Field-programmable	gate	array	(FPGA):	It	is	a	hardware	acceleration	option	that	is	already	used	for	vRAN
deployments	to	increase	the	performance	of	sites	with	compute-intensive	workloads.	The	FPGA	units	are
programmed	with	workload-specific	software	to	offload	the	execution	of	some	application-specific	algorithms.
Graphics	Processing	Unit	(GPU):	GPUs	have	a	high-number	of	cores	which	may	be	utilized	by	a	wide	variety	of
parallel-processing	intensive	workloads	such	as	MapReduce,	machine	learning	(ML),	IoT	and	gaming.	While	using
GPUs	is	a	good	way	to	increase	the	system	performance	where	the	workload	demands	it,	it	introduces	the	question
of	cost	constraints,	especially	if	the	number	of	edge	sites	starts	to	grow.

Reference	Architectures

Architecture	design	is	always	specific	to	the	use	case,	taking	into	account	all	the	needs	of	the	given	planned	workload
and	fine	tuning	the	infrastructure	on	demand.	As	discussed	earlier,	there	is	no	single	solution	that	would	fulfill	every
need.	However,	there	are	common	models	that	describe	high-level	layouts	which	become	important	for	day-2	operations
and	the	overall	behavior	of	the	systems.

Before	going	into	detail	about	the	individual	site	type	configurations,	there	is	a	decision	that	needs	to	be	made	on	where
to	locate	the	different	infrastructure	services’	control	functions	and	how	they	need	to	behave.	These	models	and
decisions	are	not	specific	to	the	technologies	nor	do	they	depend	on	the	particular	software	solution	chosen.

The	use	cases	in	this	document	are	mostly	envisioned	as	a	spider	web	type	of	architecture	with	hierarchy	automatically
able	to	scale	the	number	of	endpoints.	Depending	on	needs,	there	are	choices	on	the	level	of	autonomy	at	each	layer	of
the	architecture	to	support,	manage	and	scale	the	massively	distributed	systems.	The	network	connectivity	between	the
edge	nodes	requires	a	focus	on	availability	and	reliability,	as	opposed	to	bandwidth	and	latency.

This	section	covers	two	common	high-level	architecture	models	that	show	the	two	different	approaches.	They	are	the
Centralized	Control	Plane	and	the	Distributed	Control	Plane	models.	Since	this	is	a	high-level	discussion,	the	assumption
is	that	there	will	be	enough	compute,	storage	and	networking	functionality	to	the	edge	to	cover	the	basic	needs;	any
specialized	configurations	or	features	are	out	of	scope.	The	architecture	models	also	show	required	functionality	for	each
site	but	do	not	discuss	how	to	realize	it	with	any	specific	solution	such	as	Kubernetes,	OpenStack,	and	so	forth.	However,
aspects	and	tools	that	were	considered	during	the	development	of	the	models	include:

Challenges	of	managing	a	large	number	of	edge	data	centers:	Available	functionality	at	the	edge	data	center	vs.
orchestration	overhead
Preparing	the	architecture	to	handle	one	failure	at	a	time:	e.g.:	Network	connection	loss	or	degradation	to	the
central	or	regional	data	center
Providing	minimal	viable	functionality	on	small	footprints

There	are	other	studies	that	cover	similar	architectural	considerations	and	hold	similar	characteristics	without	being	fully
aligned	with	one	model	or	the	other.	For	instance,	a	recent	study	presents	a	disruptive	approach	consisting	of	running
standalone	OpenStack	installations	in	different	geographical	locations	with	collaboration	between	them	on	demand.	The
approach	delivers	the	illusion	of	a	single	connected	system	without	requiring	intrusive	changes.

Discussing	and	developing	additional	details	around	the	requirements	and	solutions	in	integrating	storage	solutions	and
further	new	components	into	edge	architectures	is	part	of	the	future	work	of	the	OSF	Edge	Computing	Group.

Centralized	Control	Plane

For	the	Centralized	Control	Plane	model,	the	edge	infrastructure	is	built	as	a	traditional	single	data	center	environment
which	is	geographically	distributed	with	WAN	connections	between	the	controller	and	compute	nodes.	If	a	distributed
node	becomes	disconnected	from	the	other	nodes,	there	is	a	risk	that	the	separated	node	might	become	non-functional.

Due	to	the	constraints	of	this	model,	the	nodes	rely	heavily	on	the	centralized	data	center	to	carry	the	burden	of
management	and	orchestration	of	the	edge	compute,	storage	and	networking	services	because	they	run	all	the	controller
functions.	Compute	services	incorporate	running	bare	metal,	containerized	and	virtualized	workloads	alike.	Related
functions	which	are	needed	to	execute	the	workload	of	the	infrastructure	are	distributed	between	the	central	and	the
edge	data	centers.

https://www.kernel.org/doc/html/v4.18/vm/numa.html
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://hal.inria.fr/hal-02527366v2/document


The	diagram	above	shows	that	all	of	the	key	control	functionality	is	located	in	the	central	site,	including	all	identity
management	and	orchestration	functions.	If	you	set	aside	the	geographically	distributed	nature,	this	approach	faces	very
similar	challenges	as	operating	large-scale	data	centers.	On	the	plus	side,	it	provides	a	centralized	view	of	the
infrastructure	as	a	whole,	which	has	its	advantages	from	an	operational	perspective.

While	the	management	and	orchestration	services	are	centralized,	this	architecture	is	less	resilient	to	failures	from
network	connection	loss.	The	edge	data	center	doesn't	have	full	autonomy,	therefore	distributing	configuration	changes
might	fail	if	there	is	lost	access	to	the	image	library	or	the	identity	management	service.	The	configuration	needs	to	allow
applications	to	continue	running	even	in	case	of	network	outages	if	the	use	case	requires	the	workload	to	be	highly
available,	i.e.	a	Point	of	Sales	system	in	a	retail	deployment	or	the	industrial	robots	operating	in	an	IoT	scenario.	This	can
be	challenging	because	most	data	center	centric	deployments	treat	compute	nodes	as	failed	resources	when	they
become	unreachable.	In	addition	the	Identity	Provider	(IdP)	service	can	either	be	placed	in	the	central	data	center	or
remotely	with	connection	to	the	identity	management	service	which	limits	user	management	and	authentication.
Depending	on	the	situation,	this	might	be	considered	more	secure	due	to	the	centralized	controllers,	or	less	flexible
because	it	might	mean	lost	access	by	users	at	a	critical	juncture.

Typically,	building	such	architectures	uses	existing	software	components	as	building	blocks	from	well-known	projects
such	as	OpenStack	and	Kubernetes.	Some	edge	sites	might	only	have	containerized	workloads	while	other	sites	might	be
running	VMs.	It	is	recommended	to	review	the	Distributed	Compute	Node	(DCN)	deployment	configuration	of	TripleO
which	is	aligned	with	this	model.

In	summary,	this	architecture	model	does	not	fulfill	every	use	case,	but	it	provides	an	evolution	path	to	already	existing
architectures.	Plus,	it	also	suits	the	needs	of	scenarios	where	autonomous	behavior	is	not	a	requirement.

Distributed	Control	Plane

A	larger	set	of	use	cases	demands	edge	sites	to	be	more	fully	functional	on	their	own.	This	means	they	are	more	resilient
to	network	connectivity	issues	as	well	as	being	able	to	minimize	disruption	caused	by	latency	between	edge	sites.

The	Distributed	Control	Plane	model	defines	an	architecture	where	the	majority	of	the	control	services	reside	on	the
large/medium	edge	data	centers.	This	provides	an	orchestrational	overhead	to	synchronize	between	these	data	centers
and	manage	them	individually	and	as	part	of	a	larger,	connected	environment	at	the	same	time.

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/distributed_compute_node.html


There	are	different	options	that	can	be	used	to	overcome	the	operational	challenges	of	this	model.	One	method	is	to	use
federation	techniques	to	connect	the	databases	to	operate	the	infrastructure	as	a	whole;	another	option	is	to	synchronize
the	databases	across	sites	to	make	sure	they	have	the	same	working	set	of	configurations	across	the	deployment.	This
model	still	allows	for	the	existence	of	small	edge	data	centers	with	small	footprints	where	there	would	be	a	limited
amount	of	compute	services,	and	the	preference	would	be	to	devote	the	majority	of	the	available	resources	to	the
workloads.

The	most	common	example	is	when	the	location	of	the	components	of	the	identity	management	service	are	chosen
based	on	the	scenario	along	with	one	of	the	aforementioned	methods	to	connect	them.	The	choice	depends	on	the
characteristics	of	the	individual	use	case	and	the	capabilities	of	the	software	components	used,	because	the	overall
behavior	and	management	of	each	configuration	is	different.	For	instance,	using	the	OpenStack	Identity	Management
service	(Keystone)	to	locate	it	into	an	edge	deployment	without	the	limitation	of	technologies	as	its	API	supports	both
OpenStack	and	Kubernetes	or	the	combination	of	both.

This	architecture	model	is	much	more	flexible	in	case	of	a	network	connection	loss	because	all	the	required	services	to
modify	the	workloads	or	perform	user	management	operations	are	available	locally.	There	are	still	potential	obstacles,
such	as	not	having	all	the	images	available	locally	due	to	limitations	of	storage	and	cache	sizes.	There	are	also	new
challenges	due	to	the	additional	burden	of	running	a	large	number	of	control	functions	across	a	geographically
distributed	environment	that	makes	managing	the	orchestration	type	services	more	complex.

As	in	the	previous	case,	this	architecture	supports	a	combination	of	OpenStack	and	Kubernetes	services	that	can	be
distributed	in	the	environment	to	fulfill	all	the	required	functionality	for	each	site.	An	example	of	this	is	StarlingX,	as	its
architecture	closely	resembles	the	distributed	model.

There	are	hybrid	solutions	on	the	market	that	try	to	leverage	the	best	of	both	worlds	by	deploying	full	installations	in	the
central	nodes	as	well	as	large/medium	edge	data	centers	and	have	an	orchestration	type	service	on	top,	such	as	ONAP,
an	orchestration	tool	used	in	the	telecom	industry.

Future	architectural	considerations

The	above	described	models	are	still	under	development	as	more	needs	and	requirements	are	gathered	in	specific	areas,
such	as:

Storage:	Considerations	include	local	storage	to	enable	high	performance	and	low	latency	processing	of	data	as
well	as	providing	options	to	connect	to	remote	storage	solutions.	Several	alternatives	are	available,	ranging	from
small	and	simple	systems	like	software	RAID	or	LVM	to	large	and	highly	reliable	distributed	storage	managers	like

https://www.starlingx.io/
https://www.onap.org/


Ceph.
Bare	metal	management:	It	can	be	introduced	on	multiple	layers,	one	being	the	infrastructure	operator	in	need	of
managing	and	scaling	their	infrastructure	to	include	zero	touch	provisioning	methods,	and	the	other	being	the	user
of	the	infrastructure	who	may	get	the	permission	and	option	to	create	new	edge	sites	on	demand.

There	are	other	studies	that	cover	similar	architectural	considerations	and	hold	similar	characteristics	without	being	fully
aligned	with	one	model	or	the	other.	For	instance,	a	recent	study	presents	a	disruptive	approach	consisting	of	running
standalone	OpenStack	installations	in	different	geographical	locations	with	collaboration	between	them	on	demand.	The
approach	delivers	the	illusion	of	a	single	connected	system	without	requiring	intrusive	changes.

Discussing	and	developing	additional	details	around	the	requirements	and	solutions	in	integrating	storage	solutions	and
further	new	components	into	edge	architectures	is	part	of	the	future	work	of	the	OSF	Edge	Computing	Group.

Testing	considerations

Defining	common	architectures	for	edge	solutions	is	a	complicated	challenge	in	itself,	but	it	is	only	the	beginning	of	the
journey.	The	next	step	is	to	be	able	to	deploy	and	test	the	solution	to	verify	and	validate	its	functionality	and	ensure	it
performs	as	expected.	As	the	edge	architectures	are	still	in	the	early	phase,	it	is	important	to	be	able	to	identify
advantages	and	disadvantages	of	the	characteristics	for	each	model	to	determine	the	best	fit	for	a	given	use	case.

The	building	blocks	are	already	available	to	create	edge	deployments	for	OpenStack	and	Kubernetes.	These	are	both
open	source	projects	with	extensive	testing	efforts	that	are	available	in	an	open	environment.	While	it	is	common	to
perform	functional	and	integration	testing	as	well	as	scalability	and	robustness	checks	on	the	code	base,	these
deployments	rarely	get	extended	beyond	one	or	maybe	a	few	physical	servers.	In	the	case	of	edge	architectures	it	is
crucial	to	check	functionality	that	is	designed	to	overcome	the	geographical	distribution	of	the	infrastructure,	especially
in	the	circumstance	where	the	configurations	of	the	architectural	models	are	fundamentally	different.	In	order	to	ensure
stable	and	trustable	outcomes	it	is	recommended	to	look	into	the	best	practices	of	the	scientific	community	to	find	the
most	robust	solution.	One	common	standard	practice	is	the	artifact	review	and	badging	approach.

Testing	is	as	much	an	art	form	as	it	is	a	precise	engineering	process.	Testing	code	on	lower	levels,	such	as	unit	tests	or
checking	responses	of	components	through	API	tests,	is	straightforward.	This	allows	frameworks	to	be	created	that
support	running	an	automated	unit	test	suite	that	addresses	requirements	such	as	repeatability,	replicability	and
reproducibility.	Testing	the	integrated	systems	to	emulate	the	configuration	and	circumstances	of	production
environments	can	be	quite	challenging.	The	diagram	below	describes	the	general	process	that	is	executed	when
performing	experimental	campaigns.	This	process,	that	is	applied	in	the	field	of	research,	can	also	be	utilized	to	help
build	new	components	and	solutions	that	fit	the	requirements	of	edge	computing	use	cases	even	though	some	of	the
steps	still	need	more	tools	to	perform	all	checks	as	if	they	were	simple	unit	tests.

The	first	seemingly	trivial	step	describing	the	acquisition	of	resources	from	a	testbed	is	not	specific	to	edge	computing
scenarios.	The	assigned	resources	(e.g.,	compute,	storage,	network)	represent	the	physical	infrastructure	that	will	be
used	to	conduct	the	evaluation.

The	second	phase	is	more	difficult.	It	incorporates	multiple	sub	steps	to	prepare	the	physical	infrastructure	as	well	as	the
deployment	of	the	system	under	test	(SUT).	As	edge	environments	can	be	very	complex,	they	also	need	to	be	tested	for
their	ability	to	be	prepared	for	circumstances	such	as	an	unreliable	network	connection.	Therefore,	having	a	deployment
tool	that	supports	a	declarative	approach	is	preferred	to	specify	the	characteristics	of	the	infrastructure	such	as	latency,
throughput	and	network	packet	loss	ratio	to	emulate	the	targeted	real	life	scenario	and	circumstances.

Once	the	deployment	plan	has	been	created	and	the	resources	have	been	selected,	it	needs	to	be	confirmed	that	the
infrastructure	is	configured	correctly	during	the	pre-deployment	phase	before	installing	the	applications	and	services	on
top.	This	is	especially	true	in	edge	architectures	where	resources	must	be	available	over	complex	networking	topologies.
For	instance,	profile	attributes	may	have	all	been	set	correctly,	but	are	all	the	resources	reachable,	in	good	health,	and
can	communicate	to	each	other	as	expected?	The	checks	can	be	as	simple	as	using	the	ping	command	bi-directionally,
verifying	specific	network	ports	to	be	open	and	so	forth.	The	purpose	of	this	procedure	is	to	ensure	that	the	deployment
step	will	be	completed	successfully	and	result	in	a	test	environment	that	is	aligned	with	the	requirements	and	plans.	The
complexity	of	edge	architectures	often	demands	a	granular	and	robust	pre-deployment	validation	framework.

Now	that	the	testbed	is	prepared	and	tested,	the	next	step	is	to	deploy	the	software	applications	on	the	infrastructure.
For	systems	built	on	environments	such	as	OpenStack	and	Kubernetes	services,	frameworks	like	Kolla,	TripleO,
Kubespray	or	Airship	are	available	as	starting	points.	Be	aware	that	the	majority	of	these	tools	are	designed	with	the
limitations	of	one	datacenter	as	their	scope,	which	means	that	there	is	an	assumption	that	the	environment	can	scale
further	during	operation,	while	edge	infrastructures	are	geographically	distributed	and	often	have	limited	resources	in	the
remote	nodes.	In	addition,	the	configuration	options	are	significantly	different	among	the	different	models.	As	part	of
testing	edge	architectures,	the	deployment	tools	need	to	be	validated	to	identify	the	ones	that	can	be	adapted	and
reused	for	these	scenarios.	To	ensure	the	success	of	testing,	the	installation	itself	needs	to	be	verified,	for	instance,
checking	the	services	to	ensure	they	were	installed	and	configured	correctly.	This	operation	should	preferably	be	a
functionality	of	the	deployment	tool.

https://hal.inria.fr/hal-02527366v2/document
https://www.acm.org/publications/policies/artifact-review-badging


When	all	the	preparations	are	done,	the	next	step	is	benchmarking	the	entire	integrated	framework.	Benchmarking	is
often	defined	as	performance	testing,	but	here	it	applies	to	a	broader	scope	that	includes	integration	and	functional
testing	as	well.	It	is	also	important	to	note	that	the	test	suites	can	be	heavily	dependent	on	the	use	case,	so	they	need	to
be	fine	tuned	for	the	architecture	model	being	used.	While	a	few	tools	exist	to	perform	network	traffic	shaping	and	fault
injections,	the	challenge	lies	more	in	the	identification	of	values	that	are	representative	to	the	aforementioned	edge	use
cases.

Building	an	edge	infrastructure	consists	of	various	well	known	components	that	were	not	implemented	specifically	for
edge	use	cases	originally.	Because	of	that,	there	are	situations	where	there	will	be	a	need	to	test	basic	functionality	in
these	environments	as	well	to	make	sure	they	work	as	expected	in	other	scenarios.	Example	functions	include:

create/delete	a	resource	(user,	flavor,	image,	etc);	scope:	one	or	more	edge	sites
list	instances	(VM,	container);	scope:	an	edge	site	or	‘single	pane	of	glass’	dashboard
create	resources	for	cross-data-center	networks

Further	testing	of	the	edge	infrastructure	needs	to	take	the	choice	of	architectural	model	into	consideration:

Using	OpenStack	in	the	centralized	control	plane	model	depends	on	the	distributed	virtual	router	(DVR)	feature	of
the	OpenStack	Network	Connectivity	as	a	Service	(Neutron)	component.
The	behavior	of	the	edge	data	centers	in	case	of	a	network	connection	loss	might	be	different	based	on	the
architectural	models.	In	some	cases,	the	decision	might	be	to	choose	to	configure	the	system	to	keep	the	instances
running	while	in	other	cases,	the	right	approach	would	be	to	destroy	the	workloads	in	case	the	site	becomes
isolated.	In	addition	to	these	considerations,	the	expectations	on	functions	such	as	auto-scaling	will	also	be	different
due	to	possible	resource	constraints,	which	need	to	be	reflected	in	the	test	suites	as	well.

The	final	two	steps	are	trivial.	The	test	results	need	to	be	collected	and	evaluated,	before	returning	the	SUT	infrastructure
to	its	original	state.

Tools	such	as	Enos,	Enos-Kubernetes	and	enoslib	are	available	in	the	experiment-driven	research	community	to	evaluate
OpenStack	and	Kubernetes	in	a	distributed	environment	over	Wide	Area	Network	(WAN)	connection.	They	can	be
extended	or	leveraged	as	examples	of	solutions	that	can	be	used	to	perform	the	above	described	process	to	evaluate
some	of	the	architecture	options	for	edge.	Further	components	are	needed	to	ensure	the	ability	to	test	more	complex
environments	where	growing	numbers	of	building	blocks	are	integrated	with	each	other.

Conclusion

Edge	computing	is	highly	dependent	on	lessons	learned	and	solutions	implemented	in	the	cloud.	Even	if	the	majority	of
building	blocks	are	available	to	create	an	environment	that	fulfills	most	requirements,	many	of	these	components	need
fine	tuning	or	API	extensions	to	provide	a	more	optimized	and	fit	for	purpose	solution.	Deployment	and	testing
requirements	are	further	highlighted	for	these	new	architectural	considerations,	and	therefore	existing	solutions	need	to
be	enhanced,	customized	and	in	some	cases	designed	and	implemented	from	scratch.

The	real	challenge	lies	in	efficient	and	thorough	testing	of	the	new	concepts	and	evolving	architecture	models.	New	test
cases	need	to	be	identified	along	with	values	that	are	representative	to	typical	circumstances	and	system	failures.
Testing	can	help	with	both	enhancing	architectural	considerations	as	well	as	identifying	shortcomings	of	different
solutions.

As	can	be	seen	from	these	discussions,	edge	computing	related	innovation	and	software	evolution	is	still	very	much	in	its
early	stages.	Yes,	there	are	systems	running	in	production	that	resemble	at	least	some	of	the	considerations—uCPE	or
vRAN	deployments,	for	example.	The	architecture	models	discussed	here	cover	the	majority	of	the	use	cases,	however,
they	still	need	additional	efforts	to	detail	the	required	functionality	to	go	beyond	the	basics,	outline	further	preferable
solutions	and	document	best	practices.

This	is	the	perfect	time	for	groups	in	the	IT	industry,	both	open	groups	and	semi-open	or	closed	consortiums,	as	well	as
standardization	bodies,	to	collaborate	on	taking	the	next	steps	for	architecture	design	and	testing	in	order	to	be	able	to
address	the	needs	of	the	various	edge	computing	use	cases.	Considering	the	high	level	of	integration	needed,	it	is	crucial
that	the	subject	matter	experts	of	the	various	components	start	to	contribute	to	a	common	effort.

Authors

Beth	Cohen,	Distinguished	Member	of	Technical	Staff,	Verizon
Gergely	Csatári,	Senior	Open	Source	Specialist,	Nokia
Shuquan	Huang,	Technical	Director,	99Cloud
Bruce	Jones,	StarlingX	Architect	&	Program	Manager,	Intel	Corp.
Adrien	Lebre,	Professor	in	Computer	Science,	IMT	Atlantique	/	Inria	/	LS2N
David	Paterson,	Sr.	Principal	Software	Engineer,	Dell	Technologies
Ildikó	Váncsa,	Ecosystem	Technical	Lead,	OpenStack	Foundation

https://enos.readthedocs.io/en/stable/provider/openstack.html
https://pypi.org/project/enos-kubernetes
https://gitlab.inria.fr/discovery/enoslib

