
LINUX DEVICE DRIVER AND BOARD SUPPORT PACKAGE
DEVELOPMENT

COURSE DESCRIPTION

The Linux Device Driver and Board Support Package Development

course provides engineers with a fast, cost-effective way to acquire the

skills necessary to develop, deploy, and debug their own customized

Linux device drivers and BSPs in the Wind River® Linux environment.

After this course, participants will be able to perform the following:

•	 Develop and manipulate Linux kernel modules

•	 Develop Linux device drivers for the various types of devices

supported in Linux

•	 Describe the workings of the different kernel subsystems and

how they impact the structure of a device driver

•	 Debug Linux device drivers

•	 Use the Yocto Project tools to create a new BSP and customize,

patch, and validate the BSP

•	 Port Wind River Linux platform projects to new boards

PRODUCTS SUPPORTED

•	 Wind River Linux 9

•	 The following target is available: QEMU simulated target

COURSE FORMAT

•	 This four-day expert-led course consists of lectures and lab

sessions.

•	 Students gain hands-on experience and receive personal guid-

ance from expert Wind River instructors.

•	 Specific questions are addressed.

AUDIENCE

•	 Anyone new to device driver and BSP development in Linux

•	 Linux application developers who need insight into how the

Linux kernel works

•	 Developers interested in the interface between the Linux kernel

and device drivers

•	 Developers who plan to use Wind River Linux on an unsup-

ported board (hardware architecture is supported)

PREREQUISITE SKILLS

•	 Familiarity with the Yocto Project build environment

•	 Familiarity with makefiles and the GNU toolchain

•	 Understanding of how to deploy and debug Linux-based appli-

cations in a cross-development environment

•	 C or C++ programming experience on Linux/UNIX

PREREQUISITE COURSES

•	 Introduction to Linux

RELATED COURSES

•	 Wind River Linux CLI Essentials

Course title:	� Linux Device Driver and Board
Support Package Development

Duration:	 Four days

Format:	 �Instructor-led lectures and hands-on
lab sessions; instructor-led Live Remote
delivery available

Content:	� Day 1: Introduction to Linux Device
Drivers; Linux Kernel Source Code;
Introduction to Linux Kernel Modules;
Character Device Drivers

	� Day 2: Managing Memory in the Linux
Device Drivers; Concurrency in Linux
Device Drivers; Managing Time in Linux
Device Drivers; Handling Interrupts in
Linux Device Drivers; Debugging Linux
Device Drivers

	� Day 3: Linux PCI Device Drivers; Linux
USB Device Drivers; Block Device Drivers;
Network Device Drivers

	� Day 4: Wind River Linux BSP Overview;
Creating Wind River Linux BSPs;
Additional BSP Considerations

1 | Data Sheet

™

EDUCATION SERVICES

WHEN IT MATTERS, IT RUNS ON WIND RIVER

LINUX DEVICE DRIVER AND BOARD SUPPORT PACKAGE DEVELOPMENT

SYLLABUS

Day 1

INTRODUCTION TO LINUX DEVICE DRIVERS

•	 Linux architecture overview

•	 Linux device driver overview

•	 Device driver types

•	 Linux device model

LINUX KERNEL SOURCE CODE

•	 Source code organization

•	 The kernel configurator

•	 The kernel build system

•	 Working with kernel patches

•	 LAB: Getting Started with the Wind River Linux Lab

Environment

•	 LAB: Managing Simulated Targets from the Command Line

INTRODUCTION TO LINUX KERNEL MODULES

•	 Overview

•	 Anatomy of a kernel module

•	 Module licensing

•	 Building modules

•	 Installing modules

•	 Managing modules

•	 Module parameters

•	 LAB: Managing Kernel Modules

•	 LAB: Developing Kernel Modules

CHARACTER DEVICE DRIVERS

•	 Overview

•	 Driver lifecycle

•	 Major and minor numbers

•	 Character driver entry points

•	 Blocking operations

•	 Controlling a device

•	 Querying read/write ability

•	 Restricting operations

•	 LAB: Developing a Character Device Driver

Day 2

MANAGING MEMORY IN THE LINUX DEVICE DRIVERS

•	 How Linux manages memory

•	 Allocating memory with kmalloc()

•	 Page-based memory allocation

•	 Manipulating memory

•	 Memory-mapped I/O

•	 Accessing user space memory

•	 Implementing the mmap operation

•	 LAB: Managing Memory in Kernel Code

CONCURRENCY IN LINUX DEVICE DRIVERS

•	 Concurrency

•	 Race conditions

•	 Locking primitives

•	 Deadlock

•	 Atomic variables

•	 LAB: Managing Concurrency in Kernel Code

MANAGING TIME IN LINUX DEVICE DRIVERS

•	 Measuring time in the kernel

•	 Delaying execution

•	 Deferring execution

•	 LAB: Managing Execution of Driver Code

HANDLING INTERRUPTS IN LINUX DEVICE DRIVERS

•	 How interrupts work

•	 IRQ threads

•	 Interrupt handlers

•	 LAB: Implementing Interrupt Handlers

DEBUGGING LINUX DEVICE DRIVERS

•	 Debugging by printing

•	 Debugging by querying

•	 Debugging by observation

•	 Using a kernel debugger

•	 LAB: Implementing Debugging Strategies in Kernel Code

•	 LAB: Configuring KGDB

•	 LAB: Kernel Debugging with GDB

Day 3

LINUX PCI DEVICE DRIVERS

•	 PCI configuration space

•	 Identifying devices

•	 Matching devices and drivers

•	 Driver registration

•	 probe() function

•	 Memory and I/O regions

•	 DMA

•	 remove() function

•	 LAB: Driving Devices over PCI

2 | Data Sheet

LINUX DEVICE DRIVER AND BOARD SUPPORT PACKAGE DEVELOPMENT

LINUX USB DEVICE DRIVERS

•	 USB architecture

•	 Matching devices and drivers

•	 Driver registration

•	 Probe function

•	 Communicating with the device

•	 LAB: Driving Devices over USB

BLOCK DEVICE DRIVERS

•	 Driver lifecycle

•	 Major and minor numbers

•	 Block driver entry points

•	 Processing requests

•	 Controlling a device

•	 LAB: Developing a Block Device Driver

NETWORK DEVICE DRIVERS

•	 Overview of network devices

•	 Driver registration

•	 Network driver entry points

•	 Controlling interfaces

•	 Packet transmission

•	 Packet reception

•	 LAB: Developing a Network Device Driver

Day 4

WIND RIVER LINUX BSP OVERVIEW

•	 Role of a Wind River Linux BSP

•	 Wind River Linux BSP structure

•	 Setting up the build environment

•	 Configuring and patching a kernel

•	 Configuring user space

CREATING WIND RIVER LINUX BSPS

•	 BSP development overview

•	 Starting from scratch

•	 Starting with third-party code

•	 Enabling supported boards

•	 Cloning BSPs

•	 Packaging Wind River Linux BSPs

•	 LAB: Managing Kernel Modules

•	 LAB: Developing Kernel Modules

•	 LAB: Creating a BSP

ADDITIONAL BSP CONSIDERATIONS

•	 BSP documentation

•	 Boot loaders

•	 Legal requirements

•	 Validating a BSP

•	 LAB: Validating the Kernel

GLOBAL REACH OF WIND RIVER EDUCATION SERVICES

With more than 30 years of experience delivering software for

intelligent systems, Wind River provides education services in

every region of the world. Our private classes can be tailored to

your needs by adding or removing topics from multiple courses. If

you have more specific project challenges, Wind River Mentoring

provides coaching by experienced engineers to help you integrate

Wind River solutions into your environment. And when you’re too

busy to attend a whole class, our On-Demand Learning options

provide around-the-clock access to advanced and specialized

topics. All of our education services are led by expert engineers

who are closely connected to the Wind River technical community

for access to specific expertise.

CONTACT US

For more information about Wind River Education Services, visit

www.windriver.com/education.

Wind River World Headquarters

500 Wind River Way
Alameda, CA 94501
USA
Toll-free: 800-545-9463
Tel.: 510-748-4100
Fax: 510-749-2454

training@windriver.com

Wind River EMEA

Steinheilstrasse 10
85737 Ismaning
Germany
Tel.: +49 89 962 445 0
Fax: +49 89 962 445 999

emea-training@windriver.com

Wind River is a global leader in delivering software for the Internet of Things. The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support. Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems.

©2017 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 11/2017

www.windriver.com/education/
mailto:training%40windriver.com?subject=

