
WHITE PAPER

Software Challenges
When Developing
Applications for
Multiprocessor
Embedded Systems

WHITE PAPER 2

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

Getting Down to Business
To start the development cycle, there are several questions that designers or design teams
should ask to get the project underway. Some of the points that should be addressed include:

Introduction

Complex multiprocessor systems require a broad array
of software tools to speed system application software
development.

Developing software for complex, multiprocessor embedded
systems such as found in military, aerospace, and industrial
applications is often a challenge due to the multitasking and
multithreading employed to get the maximum performance
from the CPUs. Those CPUs often integrate multiple processor
cores, and the systems may even contain CPUs with different
architectures, thus increasing the complexity of application

programming. Generic software tools and algorithm libraries to
program these multiprocessor embedded systems are available
from multiple suppliers such as Wind River.

Additionally, system hardware vendors such as Abaco (formerly
the embedded systems business of GE Intelligent Platforms)
and others have developed their own tool suites and algorithm
libraries that are optimized for their processor boards and other
generic and application-speci ic boards used in the system.

How to size the
system—what

compute resources
will it require?

How to maximize
the performance

of the algorithms?

How to verify if the
system is configured

as it should be?

How to move data
around the system

across widely differing
interconnects?

How to map the
application onto

the system?

How to see
the application’s
performance in

real-time?

How to rescale the
application to a different

sized system without
a major rewrite?

How to migrate the
application to new

processors and
interconnects??

WHITE PAPER 3

Addressing all these questions requires a modern software tool-
chain with an easy-to-use and flexible graphical user interface
(GUI) and a rich algorithm library to tackle the signal processing,
control, and data handling applications. The combination of these
tools and libraries will result in significant reduction in the time
needed to develop the system software versus the use of generic
software development tools.

Just such a suite of tools was developed by Abaco—the AXIS
Advanced Multiprocessor Integrated Software environment,
which consists of five main integrated software elements
(Figure 1):

> AXISFlow or AXIS MPI, which handle interprocessor
communications

> AXISView, which provides multiprocessor productivity tools,
and

> AXIS EventView, which provides an event analysis tool.

> AXIS DataView, which provides a tool for GUI development.

> AXISLib, which contains optimized high-performance digital
signal processing libraries.

Without such a tool, it can take a great deal of time to log into
each node, extract the configuration and discovery data, and
to correlate the data across the system. One solution to the
software challenge is the AXIS suite of software development
tools from Abaco. The suite consists of an integrated set of
software development tools that are designed to simplify
the process of creating DSP and other applications based on
multiprocessor platforms.

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

Multithreaded Application

Optimized math
and function libraries

AXISLib AXISFlow AXIS MPI AXISView

EventView

DataView

Inter-processor
communication

Productivity suite

Universal Interface Layer (UIL)

Board Support Package and drivers (VxWorks, Linux, Windows)

Figure 1: The AXIS tool suite developed by Abaco provides a complete software and hardware development environment for complex multiprocessor,
multithreaded applications. It contains an optimized math and function library (AXISLib), tools to support interprocessor communications (AXIS Flow),
performance evaluation tools (Event View and Data View), and a suite of productivity tools to speed software development (AXIS View).

The suite consists of an integrated set
of software development tools that

are designed to simplify the process
of creating DSP and other applications

based on multiprocessor platforms.

WHITE PAPER 4

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

Figure 2: A typical system design modeled with AXISView can
be probed using the HardwareView component of the software,
allowing the designer to view all aspects of the design.

AXISFlow and AXIS MPI middleware libraries focus on
interprocessor communications, while AXISView offers
multiprocessor productivity tools, and AXISLib contains a library
of optimized digital signal processing algorithms. Although each
component can be used independently, the tools are designed
to work together as a single environment. Together, they can cut
the time needed to map the application to the system, run it, test
performance, and then remap until the desired result is achieved.

How to Size the System
When the time comes to develop the software, designers should
have a pretty good idea about what the core of the application
software needs to do. There may even be a C-code prototype
of the application software. Using the prototype code or the
application description, designers can figure out what compute
resources will be needed to run the application in real-time.
One approach to do that is to develop a tool that can model
the compute performance of different processors at different
clock speeds. By then feeding the code snippets into this tool,
a reasonable estimate can be made for how the algorithm
will perform on a CPU such as x86, a PowerPC, or a field-
programmable gate array (FPGA), for instance. In the near future,
the Abaco tools will also be able to handle development for ARM-
based systems.

Such an exercise would let the designer decide which processor
types best match which algorithms, and how many processors
and/or FPGA resources will be needed to perform the required
task in the timeframe allowed, which is typically dictated by the
incoming data rate.

The more sophisticated the tool, the better the analysis. The
tool should model the arithmetic-logic unit (ALU), the memory
subsystem, multiple layers of caches and the I/O channels.
Outputs from the tool can be defined as “costs,” which can then
be manipulated—compute resources, power, etc. Such a utility
has begun to find application in the real world, helping to size
systems to create more accurate proposals.

How to Check if the System is
Configured as It Should Be
Once a development system has been cobbled together, all the
boards plugged in, and all the interconnect cables have been
wired up, it is time to see if all the jumpers are set correctly,
boards are in the right slots, interconnect cables are installed
correctly, etc. This can prove to be a laborious task without
some form of automation. To ease the task, a software tool suite
that can probe all parts of the system and display the resultant
configuration information graphically can be a boon.

The screenshot in Figure 2 shows a typical scenario of a
system employing DSP engines and PowerPC compute
engines. Generated by the HardwareView component of the
AXISView software, the diagram shows multiple DSP cards and
CPU cards being probed. The boards are linked by VME and
StarFabric buses. By selecting functional blocks in the graphical
representation, greater detail can be shown in the test pane to
the left. For example, clicking on the baseboard will show board
revision, revisions of any programmable devices, board serial
number, etc. The ability to log this data to a file is a great way to
document a system setup for configuration control.

Each data path in the system can have a different mechanism
and programming interface. This means the programmer must
understand the low-level hardware details. In addition, rescaling
and remapping of the application to the hardware may involve
extensive recoding. A robust Inter-Processor Communications
(IPC) library should hide all this detail, but not at the expense of
performance. AXISFlow and AXIS MPI are such libraries. They
present a simple data movement paradigm at the application
level, but underneath efficiently select and use the most efficient
transport with a minimum of abstraction inefficiency.

AXIS icons

EVENTVIEWAXISMPI DATAVIEW AXISLib AXISFlow

AXISProAXISVIEW AXIS Takyon

WHITE PAPER 5

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

The AXISFlow interprocessor communication software provides
high throughput, low latency, reconfigurable interconnects that
facilitate data transport between tasks, processes, processor
cores, boards and systems. Processing elements can be
integrated for seamless scalability to meet the requirements of
the most demanding of applications. Recently added features
enable control over task affinity in SMP architectures and
partitioning of applications over multiple processes.

A user API, which is independent of processor, operating system
and fabric, insures that the tool has a lot of flexibility, thus
providing designers with the ability to handle a wide array of
applications, both now and in the future. The AXISFlow tool can
operate standalone or as an integral element within the AXIS
software environment. Its integrated modular architecture has the
flexibility to allow the engineer to select the specific functionality
required, with the ability to reconfigure or scale the system to
meet future application demands.

How to Map an Application onto the
Processing Resources Available
The high-level system design will typically partition the
application into discrete tasks. Now comes the chore of allocating

the tasks to physical compute resources. Traditionally with a real-
time operating system, this can require much messing around
with console windows, scripts and typing. Worse, the placement
of these tasks can change the interconnect between nodes,
and thus require code changes (unless the tool suite allows for
positionless communication strategies). Far better would be a
tool that allows the user to place tasks based on processor type,
board type, or automatically.

In the AXIS ApplicationView screenshot shown in Figure 3, tasks
are illustrated as circular objects. The windows above the graphic
are used to set the number of instantiations of each task and
their allocation to compute resources. The interconnecting lines
show data flow paths between the tasks. These paths include
simple point-to-point transfers and some more complex data
manipulations such as scatter, gather, and all-to-all. Once a
configuration has been set, a single click generates the source
code modules to configure the AXISFlow communications library
and automatically generate the code to initialize the system and
instantiate the required tasks or processes automatically, saving
hours of coding.

 To allocate the resources a graphical tool such as
ApplicationView in combination with the AXISFlow libraries can
handle task replication by formula. For example, based on the
number of processors per board and the number of boards in the
system, a configuration can be generated with N*C instantiations
of a certain task, where N is the number the CPUs in the system
and C is the number of cores per CPU; the system could then be
made to rescale based on a revised core count.

For instance, with two dual-processor Intel i7 boards in the
system, N=4 and C=4 so we generate 16 instances of the
task. If we later find that this configuration does not meet our
performance requirements, we can add another board; now
N=6, and we have 48 instantiations. If the tools include the self-
discovery feature, this rescaling can be fully automatic. Tied to a
positionless communications scheme, this can lead to a highly
flexible, scalable configuration tool.

Figure 3: In this screenshot of the ApplicationView tool, system
tasks are represented as circular objects and the interconnecting
lines show the data flows between the tasks. The tool allows a
single click to generate the source-code modules to configure the
AXISFlow communications library elements, saving hours of coding.

Processing elements can be
integrated for seamless scalability to

meet the requirements of the most
demanding of applications.

AXIS icons

EVENTVIEWAXISMPI DATAVIEW AXISLib AXISFlow

AXISProAXISVIEW AXIS Takyon

WHITE PAPER 6

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

The tool also provides the ability for the user to control the allocation
of tasks to specific CPU cores (core affinity) and also partitioning of
application sub-sets in separate processes if desired.

Evaluating Application Behavior
and Performance
One of the toughest problems facing real-time embedded
application developers comes after the successful creation of a
functional application. At this point, the developer usually finds
performance is below expectations and significant tuning and
optimization is required.

The challenge is to identify the areas in which to focus the effort.
There may be sections of code that can be made an order of
magnitude faster by some focused optimization, but if that piece
of code only represents 2% of overall application execution time,
then it is probably not worth the effort.

The developer needs to identify the ‘long poles in the tent.’ These
may be processing algorithms that are inefficient or bottlenecks
in the data movement between threads and processors. A tool is
needed to identify these performance issues. Traditionally, at this
point, two types of tools can be used.

Profiling tools
Profilers are a traditional tool used to determine the efficiency
of an application. Offering a useful overview of the application’s
effective utilization of the underlying processing resources,
profilers can show where the majority of time is being taken in
the code.

There are a number of commercial profilers available that do
a good job. Allinea MAP is one worthy of special mention as
this also has hooks into MPI, an open standard communication
middleware layer, to profile of inter-process communications.

However, profilers generally do not tell the whole story, as they
tend to report averages. If a bottleneck resides in a specific
thread, it can be difficult to use a profiler to identify this explicitly.

Event analyzers
This is where an event analyzer can be invaluable. Event
analyzers present timing measurements with more granularity
and give a timeline of events in the application. This can enable
the developer to home in on problem areas much more quickly
than the results from a profiler will facilitate.

The AXIS EventView tool developed by Abaco is an example of
an event analyzer focused on analyzing real-time embedded
applications that consist of multiple threads distributed over
multiple CPU cores. AXIS EventView’s interface enables the
developer to visualize time-aligned event traces across many
application threads. Additional statistical information, including
histograms, can be displayed to immediately indicate application
jitter and therefore determinism.

Profilers and event analyzers can be viewed as complementary
performance analysis tools. In general, however, event analyzers
often provide more valuable insight. Some tools are designed for
the high-performance computing market, to handle thousands
of threads across thousands of cores. Others perform very in-
depth analysis of operating systems events and their interaction
with the hardware. The key question to ask is: does this suit the
application being tuned?

Figure 4: Able to analyze real-time embedded applications that
consist of multiple threads distributed over multiple CPU cores,
the EventView tool enables the developer to visualize time-
aligned event traces across many application threads.

AXIS EventView’s interface enables the
developer to visualize time-aligned event
traces across many application threads.

AXIS icons

EVENTVIEWAXISMPI DATAVIEW AXISLib AXISFlow

AXISProAXISVIEW AXIS Takyon

WHITE PAPER 7

WE INNOVATE. WE DELIVER. YOU SUCCEED.
Americas: 866-OK-ABACO or +1-866-652-2226 Asia & Oceania: +81-3-5544-3973
Europe, Africa, & Middle East: +44 (0) 1327-359444
Locate an Abaco Systems Sales Representative visit: abaco.com/products/sales

abaco.com @AbacoSys
©2017 Abaco Systems. All Rights Reserved. All other brands, names or trademarks are property
of their respective owners. Specifications are subject to change without notice.

The challenges and difficulties associated with the development
of complex, high performance applications are well recognized—
and the focus on this has only increased with the growing
pressure on developers to move applications to deployment in
a shorter time, at lower cost and with minimal risk. That’s why a
number of tools to support the process have become available,
notably from software vendors as well as CPU and DSP hardware
suppliers. However, the majority of these tools address only a few
of the issues that can be encountered—and mixing and matching
a variety of tools from a range of vendors can be daunting and
potentially time-consuming.

The ideal tool would be an integrated solution with a full suite of
functionality from visualization through debugging, optimization,
integration and verification. It should be portable across hardware
architectures and operating system environments and support
scalability. Ideally it should also intuitive and easy to use. Such a
tool can make a substantial contribution to the on-time delivery of
the most challenging applications.

Software Challenges When Developing Applications
for Multiprocessor Embedded Systems

Conclusion

