
AN INTEL COMPANY

10 Steps to Virtualization

WHEN IT MATTERS, IT RUNS ON WIND RIVER

EXECUTIVE SUMMARY

Virtualization—the creation of multiple virtual machines (VMs) on a single piece of hard-

ware, where each VM emulates an actual computer so that each VM can execute a dif-

ferent operating system—has gained significant momentum in recent years. Enterprises

have discovered that virtualization can help reduce costs by making more efficient use

of hardware and computing resources. It can often deliver advantages in the areas of

performance, flexibility, and time-to-market as well.

For developers of embedded systems, virtualization brings new capabilities and possibili-

ties. It allows system architects to use multiple operating systems to design their devices,

combining the best of all words. An embedded system, for example, could use Microsoft®

Windows® for the human–machine interface (HMI), VxWorks® for real-time behavior, and

Linux for the connection into the cloud. Each operating system runs on a different set of

cores and has its own devices. Virtualization allows the system architect to design without

compromise.

Focusing on embedded virtualization through VxWorks, this paper discusses how to use

virtualization to design an embedded system, considerations for the system architect,

and the steps required to design a great new device.

TABLE OF CONTENTS

Executive Summary. . 2

Step 1: Operating Systems . . 3

Step 2: Processor . . 3

Step 3: Safety and Certification . . 3

Step 4: Security . . 3

Step 5: Booting . . 4

Step 6: Input/Output . . 4			

Step 7: Virtual I/O . . 4

Step 8: Performance. . 5

Step 9: Upgrades . . 6

Step 10: Developer Tools. . 6

Conclusion. . 6

10 STEPS TO VIRTUALIZATION

2 | White Paper

AN INTEL COMPANY

™

STEP 1: OPERATING SYSTEMS

Which operating systems should be used to best design a system?

It depends on your goals. If networking is important, Linux has the

open source advantage of being able to quickly reuse middleware

and applications.

Are graphics important, especially in an HMI? Does the end

customer want to run existing applications on the device? If so,

Windows is a logical choice.

If you need real-time capabilities, low, microsecond (or even sub-

microsecond) response times, and determinism in the execution

logic, a real-time operating system (RTOS) such as VxWorks is the

answer.

Each operating system added will run in its own dedicated VM and

will need resources: cores, memory, and devices. The amount of

resources depends on the amount of processing required of each

operating system.

Virtualization is achieved with a hypervisor used to build and run

VMs. An operating system does not need to be modified to run on

top of a hypervisor. It may, however, need additional device drivers

(as described under Step 7: Virtual I/O).

STEP 2: PROCESSOR

Processors are crucial to support efficient virtualization. Modern

processors provide hardware support for virtualization, a special

privilege level that gives the hypervisor (the core component of

virtualization) ultimate control over the hardware. The hypervisor

has more privileges than an operating system and works together

with the processor to partition the available hardware between

the VMs. The major processor architectures all provide hardware

acceleration support: ARM® with its Virtualization Extensions,

Intel® with V-PRO, and Freescale with its e500mc and later cores.

The selected processor needs to have sufficient cores to run all the

operating systems chosen under Step 1 and give them the neces-

sary processing power. For example, a quad core processor could

give one core to VxWorks, one to Linux, and two to Windows.

Hyperthreading is also a useful technique. It makes a quad core pro-

cessor operate like an 8 core, with logical cores at the hardware level.

Hyperthreading is typically effective for operating systems such as

Linux and Windows, but the impact on determinism is significant,

so it will not be appropriate for true real-time loads in most cases.

The processor needs to have sufficient memory as well. Each

VM will require a piece of memory. For Windows, the memory

required is typically counted in multiple gigabytes; Linux has more

modest demands; and an RTOS like VxWorks counts its minimum

memory requirements in kilobytes or megabytes, depending on

its configuration.

The hypervisor is the component in charge of separating these

resources; it will make sure that a core or memory given to VxWorks

will not be used by Windows (or another VM).

STEP 3: SAFETY AND CERTIFICATION

It is important to understand what level of safety and security is

required. The higher the level of safety and security, the more

restrictions the system architect has to account for, and the more

costs will be incurred.

Safety is related to the risks of devices that interact with humans

or other systems. Such devices must be certified as meeting one

or more safety standards, such as IEC 61508, ISO 26262, CENELEC

EN 50128, or DO-178C. In these designs, typically the virtualiza-

tion layer needs to be safe, as well as one or more of the VMs.

Again, safety needs to be considered early in the system design.

Virtualization plays a role in safety, in that it can

a)	 Combine multiple safety applications in separate VMs on a

single piece of hardware to provide redundancy. This makes

it possible to achieve redundancy on a single multi-core. As

always, this requires careful system design.

b)	 Combine multiple levels of criticality; that is, it can run one

VM that has a high safety requirement next to one that has a

low safety requirement. It allows the high-safety VM to remain

constant (not requiring re-certification) while the low-safety

VM can be updated frequently.

STEP 4: SECURITY

Security is directly linked to how the system is booted, how data is

secured at rest and in transit, and which applications are allowed

to run in which VM on the system. Security is a huge topic and

needs to be considered from the beginning, as retrofitting an

existing design is often difficult.

Security demands directly affect the virtualization layer. It needs to

have such capabilities as secure boot and image validation before

the VM is booted.

10 STEPS TO VIRTUALIZATION

3 | White Paper

AN INTEL COMPANY

™

The virtualization layer itself typically does not have external inter-

faces, and hence has a small attach surface; it relies on the projec-

tion inside the virtual machines.

STEP 5: BOOTING

Within the constraints of safety and security requirements, the sys-

tem architect needs to think about how the system will be booted.

Typically there is some amount of physical storage from which the

boot-loader starts the system. This may be flash storage, USB,

Serial ATA (SATA), or anything else that fits within the device func-

tionality and footprint.

Booting takes place in stages. First, the system may run a basic

input/output system (BIOS) or some sort of early firmware, fol-

lowed by the boot-loader, then by the embedded software, which

includes the virtualization component.

VxWorks provides virtualization capabilities implemented directly

in the operating system. The embedded software layer that is

booted is thus a full-fledged operating system, also known as the

RootOS. The RootOS is then in charge of booting the VMs as the

system architect sees fit.

The kernel for the VMs may be included in the RootOS, and

thereby loaded by the boot-loader directly, or it may reside in

some form of local or remote storage. This is typically how RTOSes

or small executives are booted.

The RootOS can also boot a VM directly from disk by loading a

boot-loader in the VM and pointing the boot-loader to a partition.

This is typically how larger operating systems such as Linux and

Windows are booted.

Booting has a direct connection to Step 9: Upgrades. Today’s

embedded systems are seldom static—they need to be able to

download new workloads; hence the local storage will need to be

updated with that.

STEP 6: INPUT/OUTPUT

Because the VMs in the system need to communicate with the out-

side world, they need I/O devices. Typical I/O devices are network

cards, serial ports, graphics cards, SATA, USB, and so forth.

The easiest and most efficient path to I/O is to give each VM

direct access to the devices it needs. For example, a graphics card

would be passed directly through to Windows, and the standard

Windows device driver can make use of it. In this case, the other

VMs do not have access to this device. Only one VM can use a

device under a direct access or pass-through assignment.

Pass-through device access also optimizes performance because

the VM has direct access to the device. The hypervisor layer is

not involved in accessing, and the device can have direct memory

access to the VM.

The hypervisor is the component that enforces separation. The

individual VMs only see the devices that the system architect has

assigned to them. For example, if a VM would enumerate the PCI

bus, it expects access to the physical bus, but the hypervisor owns

the physical bus and provides an emulated PCI controller to the

VM. This emulated controller only provides the devices that are

assigned to the VM to show up on that PCI bus.

Direct assignment may not be appropriate for all I/O devices.

For example, the system architect may not want to give Windows

direct access to an external network card, but instead use Linux as

a firewall and let Linux share that connection with Windows, after

passing the traffic through a firewall.

Another challenge is that often there simply are not enough

devices to connect to all the VMs. In that case, virtual I/O can be

used, which is detailed in the next step.

STEP 7: VIRTUAL I/O

Virtual devices help in situations where it is not possible to assign

devices as pass-through to the VM. For example, the system may

only have a single SATA storage controller, but multiple VMs need

access to storage. Another example is that VMs need to commu-

nicate together, and it would be a waste to use physical devices

for this communication.

There are many virtual devices that are of no concern to the system

architect. For example, every VM gets access to a virtual PCI bus

that shows the devices assigned to that VM. The hypervisor virtual-

izes and emulates this under the surface. Similarly, the hypervisor

provides virtualized access to interrupt controllers and features at

the board and processor level. The operating system in the VM

does not even know it is acting on virtual devices. The hypervisor

hides that fact.

10 STEPS TO VIRTUALIZATION

4 | White Paper

AN INTEL COMPANY

™

A key artifact with virtual I/O is performance. With virtual I/O the

system adds software into the device path, and for embedded sys-

tems the performance of accessing devices is typically very impor-

tant. The hypervisor is perfectly capable of emulating a physical

Ethernet card, but the overhead to do so is significant. Instead,

virtual I/O systems typically make use of para-virtualization.

With para-virtualization, the hypervisor provides a software access

point to the VM. The VM has a special driver, called a para-virtu-

alized driver, that collaborates with the hypervisor and occasion-

ally with the RootOS. These para-virtualized drivers can easily

be added to existing operating systems without further need to

modify the OS.

VxWorks uses the VirtIO standard to provide virtual serial and

virtual storage capabilities. In VirtIO, the operating system in the

VM discovers the software access point through an emulated PCI

device. This emulated device is used in the configuration path

only. The operating system can then load the driver and start using

the virtual device. When the operating system interacts with the

device, it is actually interacting with a driver in the RootOS that

provides the device functionality.

VirtIO is an open source standard and most modern operating sys-

tems already provide drivers for many virtual devices. These driv-

ers can be reused to access VirtIO virtualized devices on VxWorks.

VirtIO serial can be used to create a virtual serial connection

between the RootOS and the operating system, for instance Linux.

This serial can be used for data communication or for serial access

to a console. The serial connection shows up in the operating

system as any device, /tyCo/x under VxWorks and /dev/hvcx

under Linux.

In the case of VirtIO storage, the RootOS virtualizes the block

device and provides access through the VirtIO block device driver

to the VMs. The RootOS can give a VM access to a partition and

the operating system will use its VirtIO storage driver to access

that partition.

As an example, a system can have a single SATA disk with four par-

titions. The first partition contains the system image of VxWorks

that brings up the virtualization layer. The second partition is per-

sistent storage for VxWorks to store configuration and data log

files. The third partition is for Linux, and the fourth is for Windows.

Each VM can be configured to have access only to its own parti-

tion, but Linux can be given read-only access to the VxWorks parti-

tion so VxWorks can send log data into the cloud if needed.

The system architect will need to make sure that the RootOS has

sufficient processing cycles to support the VirtIO functionality. For

example, if the RootOS virtualizes a disk, then all storage actions

to that disk will flow through the RootOS.

Another virtual device that is available is the virtual network.

VxWorks can provide a high-speed virtual network bus between

the VMs, which can be used for the VMs to communicate with

each other using standard TCP/IP stacks. This virtual network

uses shared memory between the VMs, and therefore can achieve

higher speeds then normal physical networks.

As an example, Linux can be given a physical Ethernet device in

pass-through mode while Windows and Linux are each given a

virtual network device. Linux is then the firewall and can provide

firewalled external access to Windows.

STEP 8: PERFORMANCE

Performance is crucial in embedded systems. Different projects

require different types of performance. Typical performance char-

acteristics include deterministic response latencies measured in

microseconds, algorithmic performance measured in operations

per second, or network throughput and latency measured in Gbps

and microseconds.

Performance is highly dependent on how the system is config-

ured—the number of cores a VM has, the amount of memory, and

whether it has pass-through devices or virtual devices.

It also depends on how much load the system carries. Modern

CPUs have invisible shared resources such as a system bus or

cache, and the load on these shared resources can impact the

performance of the overall system.

The initial design for a system can be worked out in PowerPoint®

or on a white board, but the final performance can only be deter-

mined by running benchmarks and fine-tuning.

Tuning can involve re-assigning memory and cores, re-prioritizing

interrupts or tasks, or temporarily slowing down VMs, known as

“throttling,” to make sure the real-time task has the processing

power it needs.

10 STEPS TO VIRTUALIZATION

5 | White Paper

AN INTEL COMPANY

™

STEP 9: UPGRADES

Systems are often updated in the field. The system architect will

need to plan for this possibility. In the case of a virtualized system,

the initial embedded software may need updating, as well as the

images running inside the VM. The hypervisor provides lifecycle

control to be able to halt and reset VMs, but the system architect

will need a plan for getting the bits to the system.

For example, in a system consisting of VxWorks, Linux, and

Windows, the Linux VM may have connectivity into the cloud and

receive a new system image or a new image for VxWorks. It can

then pass that image to the RootOS, which can store it on the disk,

and either a VM or the entire system can be rebooted to use the

new image.

STEP 10: DEVELOPER TOOLS

Systems are built by people. It is important to give people the tools

that enable them to quickly explore virtualization. VxWorks has

always been very flexible and adaptable to this end. A developer

can use the VxWorks command line to launch and stop tasks and

processes, debug, and access file systems. This same command

line can also be used to create VMs and control device assignment

in a very flexible, and either interactive or programmatic, fashion.

The VxWorks debug interface provides standard debugger

actions such as run, breakpoints, and stepping, but it also pro-

vides an extremely useful host file system capability that allows

the developer to launch binaries for processes and VMs directly

from the host development workstation. The developer can also

use the Wind River® Workbench integrated development envi-

ronment for developing and debugging. Workbench is a single

(Eclipse-based) environment that can be used to develop, debug,

and analyze the virtualization layer, VxWorks, and Wind River Linux

workloads.

The VxWorks interface provides access to the system through the

services of the operating system. In certain cases it is important

to be able to debug close to the hardware without relying on

the operating system—for example, when you are doing device

driver development. In these cases a hardware-based debugger

provides great value, as it allows you to do stop-mode debug-

ging, stopping the entire system to look at the system state. This

is what Lauterbach provides in its TRACE32 line of products. These

products allow you to go underneath the operating system and

access the bare hardware, while still having visibility into OS-level

concepts such as tasks and processes and their memory spaces,

and while being aware of VMs and the hypervisor.

CONCLUSION

Virtualization gives system architects tremendous flexibility in

system design and enables them to overcome hardware limita-

tions in the delivery of multiple applications. It has performance

advantages as well, bringing high application availability and

exceptional scalability. Understanding how to successfully deploy

virtualization—the 10 steps enumerated in this paper—is the first

step to realizing its many benefits.

Wind River offers the industry’s most comprehensive embedded

virtualization development portfolio. Our solutions support mul-

tiple architectures and are backed by knowledgeable professional

services, global customer support, hardware integration exper-

tise, and a vast partner ecosystem. Leveraging this combination

of technology and expertise, Wind River helps developers harness

the many benefits of embedded virtualization.

10 STEPS TO VIRTUALIZATION

Wind River is a global leader in delivering software for the Internet of Things. The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support. Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems.

© 2015 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 09/2015

AN INTEL COMPANY

™

