
WHEN IT MATTERS, IT RUNS ON WIND RIVER

AN INTEL COMPANY

™

WHEN IT MATTERS, IT RUNS ON WIND RIVER

Safety-Critical
Software Development for
Integrated Modular Avionics
Paul Parkinson, Principal Systems Architect, Aerospace & Defense, Wind River

EXECUTIVE SUMMARY

This technical paper presents recent trends in the development of safety-critical avionics

systems. It discusses the emergence of Integrated Modular Avionics (IMA) architectures

and standards, the resulting impact on the development of an ARINC 653–compliant

commercial off-the-shelf (COTS) real-time operating system (RTOS), and support for

multi-core processor architectures.

TABLE OF CONTENTS

Executive Summary. . 2

Introduction. . 3

Application Development with VxWorks 653 Platform . . 4

	 Spatial Partitioning. . 4

	 Temporal Partitioning . 5

ARINC 653 Application Development. . 5

Heterogeneous Application Support . . 6

System Configuration. . 7

Health Monitoring System and Restarts . . 7

Tools for Safety-Critical Systems Development . . 8

Security Considerations for Networked IMA Systems. . 9

Safety Considerations for IMA Systems. . 10

Summary. . 10

References. . 11

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

2 | White Paper

AN INTEL COMPANY

™

INTRODUCTION

Many avionics systems have been successfully developed using

custom hardware and software. However, over the last decade,

the full lifecycle costs of customized systems have forced original

equipment manufacturers (OEMs) to consider the use of COTS-

based systems. At the same time, there has been a noticeable

migration away from federated architectures, where each

individual subsystem performs a dedicated function, toward

generic computing platforms that can be used in multiple types

of applications and, in some cases, can run multiple applications

concurrently. This approach, known as integrated modular avionics,

or IMA, results in fewer subsystems that take up less space and

have reduced weight and power consumption (often referred to

as SWaP). A number of civil and military research programs have

sought to define IMA architectures, and while they differ in their

approaches, they share the same high-level objectives:

•	 Common processing subsystems: An IMA architecture should

allow multiple applications to share and reuse the same comput-

ing resources so that fewer subsystems need to be deployed,

resulting in more efficient use of system resources and leaving

space for future expansion.

•	 Software abstraction: An IMA architecture should isolate the

application not only from the underlying bus architecture but

also from the underlying hardware architecture. This practice

enhances portability of applications between different platforms

and also enables the introduction of new hardware to replace

obsolete architectures.

•	 Maximize reuse: An IMA architecture should allow for reuse

of legacy code. This practice reduces development time while

affording the developer a method of redeploying existing appli-

cations without extensive modifications.

•	 Reduced cost of change: An IMA architecture should reduce the

cost of change, both because IMA facilitates reuse and because,

by decoupling the constituent pieces of the platform that exe-

cute on the same processor, it simplifies the impact analysis, low-

ering retest costs.

IMA also facilitates support for applications that have ever-increasing

levels of functionality, including the interactions between complex

applications (such as head-up displays, map display systems, and

weather radar displays). IMA can also now exploit the technology

of multi-core processors in order to facilitate such diverse

applications as I/O offload; executing multiple, disparate operating

environments (such as Linux or other non-COTS operating systems)

through virtualization; and addressing the increasingly demanding

needs of processing power and speed required by the previously

listed applications.

Although a number of IMA architectures and standards have

emerged, the ACR Specification1 and ARINC Specification 6532

appear to have the widest adoption in the avionics community. The

ACR Specification addresses architectural considerations, whereas

ARINC Specification 653 defines at a high level an instance of a

software implementation for an IMA architecture. The widespread

adoption and support of ARINC 653 is also evident in the Future

Airborne Capability Environment (FACE™) for U.S. military avionics

programs. These and other IMA standards place new demands

on the software architecture, especially the RTOS implementation

provided by the COTS supplier. Wind River® has specifically

addressed these needs by developing Wind River VxWorks® 653

Platform to support ARINC 653 and POSIX®. This support for

open architectures has contributed to VxWorks 653 Platform being

selected for and deployed in many avionics systems and safety-

critical applications, including the C-130 Avionics Modernization

Program, 767 Tanker, the Boeing 787 Dreamliner Common Core

System (CCS), and the Airbus A330 MRTT. VxWorks 653 Platform

has also subsequently undergone independent conformance

verification, testing against the FACE Safety Base Profile, and is the

first COTS RTOS to achieve conformance certification.3

The following sections consider the technical requirements for an

integrated device software platform to support IMA applications

and show how VxWorks 653 Platform (see Figure 1) fulfills these

requirements—in particular within the context of ARINC 653

application development.

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

3 | White Paper

APPLICATION DEVELOPMENT WITH VXWORKS 653 PLATFORM

The ACR Specification defines two important concepts widely

used in IMA: spatial partitioning and temporal partitioning.

Spatial Partitioning

Spatial partitioning defines the isolation requirements for multiple

applications running concurrently on the same computing

platform, also known as a module. In this model, applications

running in an IMA partition must not be able to deprive each

other of shared application resources or those provided by the

RTOS kernel. This state is most often achieved through the use

of different virtual memory contexts enforced by the processor’s

memory management unit (MMU).

These contexts are referred to as partitions in ARINC 653. Each

partition contains an application with its own heap for dynamic

memory allocation and a stack for the application’s processes (the

ARINC 653 term for a context of execution).

These requirements affect the design and implementation of the

RTOS kernel and language runtime system. For example, VxWorks

5.5 uses a shared virtual address space for applications and

provides basic support through the MMU to prevent accidental or

malicious access to program code by errant applications, without

incurring the performance overhead of a full process model.

VxWorks 6, VxWorks 7, and VxWorks 653 provide environments

that use the MMU to enforce separate contexts.

However, in an IMA environment, memory protection alone would

not prevent an errant application running in a partition from

consuming system resources, which might have a detrimental

effect on an application running in another partition. This issue

can have serious consequences where multiple applications of

differing levels of criticality are running on the same processor.

This problem cannot be resolved through the use of a full process

model alone; instead it requires the development of an RTOS

that specifically addresses the needs of IMA. The VxWorks 653

operating system was designed specifically for this purpose and

supports the ARINC 653 model in the implementation of the

kernel architecture (see Figure 2).

•	 The module OS interacts directly with the computing platform

(core module), providing global resource management, sched-

uling, and health monitoring for each of the partitions. It also

uses a board support package (BSP), the hardware-specific con-

figuration required to run on different processors and hardware

configurations. Multi-core processors are also supported by the

module OS and its BSP. Executing on a multi-core processor

allows some additional capabilities to be exploited, such as run-

ning in an asymmetric multiprocessing (AMP) configuration and

being able to assign multiple cores to application partitions for

use by the application, accomplished through the use of APIs

provided in ARINC 653 Part 1, Supplement 4. This ability can

also allow individual partitions to be executed on their own core

for additional spatial separation.

•	 The partition OS is implemented using the VxWorks microker-

nel and provides scheduling and resource management within

a partition. Communication with the module OS occurs through

a private message-passing interface to ensure robustness. The

partition OS also provides the ARINC 653 application/executive

(APEX) interfaces for use by applications.

4 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

Figure 1. Wind River VxWorks 653 Platform

Workbench Development Suite

Eclipse Framework

Editor Compiler System Viewer

Port Monitor CPU Monitor Host Shell

Project Debugger

Certification Partners
AdaCore GNAT
Pro Ada Compiler

Software Partners

DO-178C Level A Certification Material

ARINC 653 API VxWorks API POSIX API

VxWorks 653 DO-178 Network Stack

Runtime Components

Wind River Simics Simulation Environment

COTS Boards, Semiconductor Architectures

Hardware Partners

Training and Mentoring Platform Customization

System Design
Hardware/Software
Integration

Design Services

Training and Professional Services

This architecture, which represents the virtual machine

approach as described in “Partitioning in Avionics Architectures:

Requirements, Mechanisms, and Assurance,”4 provides a means of

fulfilling the requirements of ARINC 653 while providing a flexible,

extensible framework not easily achieved with a monolithic

kernel implementation or UNIX-like implementations. Within the

framework, individual partitions are implemented using memory-

protected containers into which processes, objects, and resources

can be placed, with partitioning enforced by the MMU (virtual

machines). Each partition has its own stack and local heap, which

cannot be usurped by applications running in other partitions. The

partitions also prevent interference from errant memory accesses

by applications running in other partitions.

Figure 2 shows the conceptual implementation of the VxWorks

653 architecture. The RTOS features the ability to have a shared

partition OS library in order to simplify configuration, testing, and

certification; it can also have separate, distinct configurations of

the partition OS for one or more partitions (referred to as MPOS,

or multiple partition operating system), which allows for significant

flexibility for developers of applications to exploit various features

of the partition OS that are unique to each application.

Temporal Partitioning

Temporal partitioning defines the isolation requirements for

multiple applications running concurrently on the same computing

platform. This ensures that one application may not utilize the

processor for longer than intended to the detriment of the other

applications. ARINC 653 addresses the problem by defining an

implementation that uses partition-based scheduling. A partition

is scheduled for a time slot of defined width, and other partitions

may be allocated time slots of similar or differing durations. Within

a time slot, a partition may use its own scheduling policy, but at the

end of the time slot, the ARINC scheduler forces a context switch

to the next partition in the schedule. This model is sufficiently

flexible to enable existing federated applications or new IMA

applications developed in isolation to be hosted on a core

module. But partition scheduling and verifying that boundaries

and schedules are not violated, and taking appropriate corrective

action, inevitably create additional complexity.

In VxWorks 653, the module OS performs ARINC 653 scheduling

of the individual partitions. Within each time slot, the partition OS

uses the VxWorks scheduler to perform preemptive, priority-based

scheduling. This means that all process-level scheduling occurs

within the partition space, enabling greater scalability and stability

(minimal jitter) in the system even at high system clock rates

(e.g., greater than 1 kHz frequency; i.e., 1 millisecond period).

The implementation of VxWorks 653 Platform, Multi-core Edition

provides an ARINC 653 Part 1, Supplement 3 environment for

applications.5 It also supports optional mode-based scheduling,

where up to 16 schedules can be predefined and used for different

modes of flight or for staged initialization. The health monitoring

system (HMS) validates the new schedule before being adopted

(this feature is discussed later in the section “Health Monitoring

System and Restarts”).

ARINC 653 APPLICATION DEVELOPMENT

The ARINC 653 APEX, sometimes referred to as the ARINC 653

API, provides a general-purpose interface between the operating

system and the application software. The ARINC 653 API also

provides an abstraction layer that hides the implementation details

of a particular ARINC 653–compliant RTOS from the application

and the underlying architecture of the core module. This feature

facilitates porting of the application to other ARINC 653 platforms,

an important consideration for safety-critical IMA systems.

The ARINC 653 APEX also provides a model of static system

configuration and initialization. Here, the number of ARINC

5 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

Figure 2. VxWorks 653 RTOS architecture

DO-178 Network Stack

VxWorks Cert API, ARINC API, POSIX API

Level A Application

Util

Wind River
Libraries

Math
OS
Libraries

File
Sys

C
Libraries

VxWorks 653 Module Operating System

Core 0

VxWorks Cert or
Third-Party Guest OS

VxWorks 7 Guest OS
Wind River
Linux Guest OS

Level E
Application

Level D
Application

Level B
Application

Core 1 Core 2 Core 3

ARINC Health
Management

ARINC XML Configuration
ARINC Ports

Multi-core Hardware PlatformEthernet Serial Memory Graphics MIL-BUS Timers

VxWorks Cert Guest OS

AN INTEL COMPANY

™

processes is known ahead of time, and they are created in the

partition through startup code using the CREATE_PROCESS() API.

All other partition objects are created from the partition heap, and

once this has been done, the partition is activated through a call

to SET_PARTITION_MODE(NORMAL). At this point, the partition

OS scheduler is activated and schedules the processes within the

partition. Once the application has started, no further objects or

processes may be created dynamically. This ensures a controlled,

deterministic startup sequence for safety-critical applications and

deterministic, fixed usage of resources.

ARINC 653 also provides excellent constructs for both intra-

partition and inter-partition communication. ARINC 653 black-

boards and buffers assist with intra-partition communication.

Blackboards provide a convenient write-once/read-many mechan-

ism; buffers provide the ability to send and receive messages that are

always stored in first-in, first-out (FIFO) order but permit the receiving

process to receive them in either FIFO or priority order. Additionally,

semaphores and events can be used for synchronization.

ARINC 653 ports facilitate inter-partition communication. The same

naming scheme can be used for ports resident on the same processor

or on another core module in the same IMA cabinet or in another

IMA cabinet. This prevents applications from making architecture-

dependent and configuration-dependent assumptions, aids

portability, and eases reconfiguration by the systems integrator. The

ARINC 653 ports facility provided by VxWorks 653 also allows the

definition and use of a pseudo port, whereby an ARINC sampling or

queuing port is connected to a module OS device driver to achieve

inter-module communications while presenting a standard ARINC

API to the application.

HETEROGENEOUS APPLICATION SUPPORT

Although many IMA applications are developed from scratch,

there is a wealth of existing applications on federated systems.

These applications may be developed in different programming

languages and use different scheduling models but may still need

to communicate with each other in an IMA environment.

Wind River has addressed this need by providing support for

heterogeneous applications running within separate ARINC

partitions. This enables an Ada application using the Ravenscar

restricted-tasking profile to run on top of the VxWorks 653 partition

OS alongside other C applications in separate partitions (this is

discussed at length by Parkinson and Gasperoni6). Similarly, a FACE-

conformant and POSIX-conformant7 application can run in separate

partitions, and communication between these two heterogeneous

applications can be implemented using ARINC 653 ports (see

Figure 3).

With the availability of multi-core processors with support for

hardware virtualization, an additional avenue of development

opens up for IMA platforms, which allows the possibility of running

multiple operating environments (referred to as guest operating

systems or GOS). These GOS allow a number of options with which

it previously would have been considered difficult or impossible

to achieve sufficiently safe operation. These configurations can

include use of low safety certification level environments, such

as commercial or roll-your-own Linux environments, to address

systems such as in-flight entertainment, galley controls, and other

similar aircraft systems. The other potential use of multi-core

and virtualization is to host a legacy OS environment (COTS or

in-house developed) to allow application reuse, as well as to serve

as an asset bridge to migrate platforms forward while reducing

the risks and costs introduced by having to rewrite large portions

of those environments and applications all at one time. VxWorks

653 Platform, Multi-core Edition opens the door to these and other

possibilities for developers through the use of multi-core processors

and their capabilities.

6 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

Figure 3. VxWorks 653 heterogeneous application support

Partition OS Partition OS Partition OS Partition OS

Module OS

Processor

ARINC Ports ARINC Scheduler

APEX POSIX API Ravenscar VxWorks API

ARINC
Application

POSIX
Application

Ada
Application

VxWorks
Application

SYSTEM CONFIGURATION

The ARINC 653 architecture guarantees resource availability

through the use of system and partition configuration records

(also known as system blueprints in the IMA community). Their

purpose is to enable the configuration of IMA applications

developed by one or more OEMs onto a shared IMA platform that

is configured by the systems integrator. The partition configuration

records define the characteristics of each OEM application in terms

of memory requirements, processor requirements, and ARINC

port utilization. The system configuration record defines the

capabilities and capacities of the IMA platform and references and

validates individual partition configuration records. This scheme

enables the systems integrator to ensure that the demands of the

applications are consistent with the performance of the platform

and that individual applications do not exceed their allocated

resources.

The current revision of ARINC Specification 653 provides only

a high-level definition of the structure and content of the

configuration records and leaves the implementation up to the

RTOS implementer, although an example XML-based configuration

is presented. VxWorks 653 uses the following process:

Step 1: At system initialization, the boot code loads the module

OS and system and partition configuration records.

Step 2: The module OS initializes itself, starting its own subsystems.

Step 3: The module OS loads the application partitions and their

applications.

This process decouples the configuration of the module OS

binary image and the system and partition configuration records

binary image from the partition applications. In this way, individual

applications and subsystems can be developed separately, then

integrated easily on the target file system. Individual partition

applications can also be upgraded in a straightforward manner

without requiring changes to the module OS configuration.

This results in significantly less recertification effort and greater

flexibility for OEMs and systems integrators.

VxWorks 653 has extended the example XML-based configuration

to provide application developers, platform providers, and systems

integrators with a complete and qualified toolset, coupled with

data files to configure and initialize an IMA platform. This process,

referred to as independent build link and load (IBLL), reduces

the cost of change while providing a fully configurable runtime

environment. The process also fully realizes the goals as stated

in RTCA DO-297/EUROCAE ED-124, “Integrated Modular Avionics

(IMA) Development Guidance and Certification Considerations.”8

System and partition configurations can be changed without

rebuilding the entire application or platform, which significantly

reduces the impact-analysis burden for the systems integrator when

upgrading and modifying an existing system.

Since the tools used to generate the configuration records

in VxWorks 653 generate binary data directly from the XML

configuration data, the tool is much simpler to use and therefore

more easily qualified than other implementations. Those often rely

on more general-purpose mechanisms, such as a C compiler, to

generate the binary configuration data for use by the system.

HEALTH MONITORING SYSTEM AND RESTARTS

ARINC 653 defines the concept of a health monitor (HM) within

an IMA system. The HM is responsible for “monitoring hardware,

application, and operating system faults and failures,” and it is the

role of the HM to help “isolate faults and to prevent failures from

propagating.” Though the concept may appear straightforward, it

is actually complex, requiring a sophisticated system-wide health

monitor to track errors and perform reconfiguration and recovery.

The response to an individual fault depends on the nature of the

fault, its severity, and the error management policy defined by the

systems integrator.

The VxWorks 653 HMS is a sophisticated framework that acts as

an intrinsic part of the VxWorks 653 architecture. It fulfills all of the

requirements of ARINC 653, and provides extensions relevant to

systems integrators intending to use dynamic reconfiguration (in

particular, mode-based scheduling). The design and implemen-

tation of the VxWorks 653 HMS is sufficiently rich that only an

overview can be provided here. The HMS architecture consists

of a system-wide HM server and HM agents (called process-level

handlers in ARINC 653) residing in individual partitions, and the

architecture also includes support for the module OS. The HMS

processes events occurring in the system that need attention; these

are known as faults, though they may represent either a negative or

a positive event, such as a hardware exception or crossed threshold

7 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

(a fault is represented in software by an alarm). The framework also

supports messages, another type of event used for logging or other

behavior configured by the systems integrator. Note that HMS use

is not bound only to the ARINC support in VxWorks 653, giving

added flexibility to the application developer.

The framework provides the ability to perform health monitoring

at three levels—process HM, partition HM, and core module

HM—through three types of services: alarm detection, alarm

logging, and alarm response. The partition HM and module HM

are table-driven and provide a mapping between a code and an

appropriate handler. To aid portability, the framework uses ARINC

653 definitions for error codes, including events such as missed

deadline, numeric error, illegal request, and power fail. XML-based

configuration data is used to configure the framework and create

the table-driven mapping for runtime usage by the system. Alarm

response depends on the error level: module-level responses

include reset or shutdown; partition-level responses include the

restart of a partition.

At partition creation, a cold start is used to allocate and initialize

partition objects, whereas a warm start, which reinitializes but does

not allocate objects, is used at partition re-initialization or restart.

For process errors, the responses are application driven; the action

taken is dependent on the error type and its context. To facilitate

warm restarts, VxWorks 653 supports the use of persistent data types

that provide for preservation of critical data during the warm start

operation. This simplifies the operation and provides a mechanism

to increase the speed of startup in such situations.

TOOLS FOR SAFETY-CRITICAL SYSTEMS DEVELOPMENT

Although RTOS runtime functionality is a major consideration, a

discussion of IMA application development would be incomplete

without reference to simulation, development, and debugging

tools. The quality of simulation development and debugging tools

can have a dramatic effect on development time scales. Wind River

Simics®, a software simulation environment that enables unmodified

target binaries to be run on a virtual platform, enables very early

prototyping before physical hardware is designed and built.

Tools designed for federated application development may not

be suited to IMA development, as they need to support IMA

models and scheduling modes. VxWorks 653 Platform provides

an integrated development environment with the Eclipse-based

Wind River Workbench development suite. This state-of-the-

art environment includes project configuration, code browsing

and build, target debugging, and the Wind River System Viewer

analyzer.

Figure 4 shows Workbench debugging an application running

in an ARINC partition. In addition to capabilities provided by

Wind River, Eclipse plugins for open source and partner tools

can further extend and customize the environment. The dynamic

visualization capabilities are a real benefit to an application

developer because they provide graphic feedback on the behavior

of ARINC 653, POSIX,7 and VxWorks applications; interactions

between partitions; and the operations of the HMS. Workbench

can be used to browse, navigate, and comprehend Ada, ARINC

653, POSIX, and VxWorks applications. Wind River System Viewer

is partition aware and can display ARINC 653 processes, POSIX

threads, and VxWorks tasks running on different cores. It can be

invaluable in displaying the internal behavior of an application, as

shown by the inter-process communication between ARINC 653

processes through ARINC queuing ports in Figure 5.

It is important for the ARINC 653 application developer not only

to visualize the behavior within an individual ARINC 653 partition

but also to view application operation in the certifiable environment

as well as inter-partition communication through ARINC ports and

channels. This capability is achieved through the use of CPU time

usage monitoring, memory usage monitoring, and port monitoring

tools built into the RTOS and certified as part of the VxWorks 653

runtime system. These RTOS monitors are then coupled with RTCA

DO-178B/EUROCAE ED-12B and RTCA DO-330/EUROCAE ED-215

qualified host tools for display and logging of the data in the test for

credit environment. The monitors and tools provide unprecedented

levels of insight into the operation of the system from development

environment through final certified flight configuration.

8 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

Figure 4. Wind River Workbench showing VxWorks 653 partition debugging

SECURITY CONSIDERATIONS FOR NETWORKED

IMA SYSTEMS

Cyber security is now becoming a greater consideration in avionics

systems, with guidance being provided by RTCA DO-326A/

EUROCAE ED 202A.9 Security at the aircraft level can be achieved

through the use of firewalls that restrict interactions between

different types of subsystems and separate flight systems from

OEM systems and airline systems.10 However, with the advent of

IMA, there is a drive to increase—in a certifiable manner—the

networking connectivity within these domains. This goal presents

some interesting design challenges.

The VxWorks 653 RTOS implements a number of capabilities using

the security principle of least privilege to protect applications and

data from malicious behavior. These include, but are not limited

to, the following:

•	 Running application partitions in the processor’s user mode, so

that they are unable to execute privileged processor instructions

•	 Passing the partition OS (if it is unable to service an APEX call

on behalf of an application) to the module OS, which performs

validation of the address memory ranges, which should be

within view of the partition boundary checks, module OS object

access rights, and data structure integrity/consistency checking

•	 Providing a scalable system-call privilege mechanism, whereby

one partition can have more authority than others (which pro-

vides a foundation to meet the requirements for high-assurance

systems needing to undergo security evaluation)

•	 Implementing security restrictions in relation to the HMS, so

that, for example, only a privileged partition acting as a mode

manager for the system may request an ARINC 653 schedule

change

TCP/IP and related networking protocols require considerable

effort to certify, and systems designers have to achieve a balance

between functionality and the suitability for certification. In

particular, RTCA DO-178C Development Assurance Level (DAL) A

certification of a full TCP/IP stack is rather onerous. Some have

advocated the use of proprietary implementations utilizing a

slave processor to implement the network stack for the master

processor. However, this custom configuration uses additional

hardware and restricts software portability. Since this defeats two

of the goals of IMA outlined earlier, it can only be viewed as a

retrograde step.

The Wind River approach is to provide the optional DO-178

Network Stack, which runs on the same processor as the RTOS

and implements TCP/UDP/IPv4 capabilities and is available

with an RTCA DO-178C/EUROCAE ED-12C DAL A certification

evidence package. The DO-178 Network Stack provides a level of

functionality most avionics customers require while still providing

an extensible framework that provides the potential to integrate

additional protocols as required.

The security capabilities in the VxWorks 653 Platform product

can be augmented with additional cybersecurity capabilities to

address specific customer application use case requirements. This

can include the tailoring and integration of specific capabilities

from Wind River Services’ Information Assurance Foundation

portfolio to implement specific confidentiality, integrity, and

availability requirements related to RTCA DO-326A, DO-355, and

DO-356, or domain-specific requirements. Wind River Services

has previously integrated IA Foundation with VxWorks 653 Multi-

Core Edition on a multi-core processor platform11 and with other

Wind River operating environments.

9 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

Figure 5. Wind River System Viewer showing ARINC 653 partition behavior

SAFETY CONSIDERATIONS FOR IMA SYSTEMS

Although the certification of IMA systems is a relatively new

endeavour, many aspects build on the methods used in the

certification of existing federated systems to existing certification

standards.12 For example, the concept of reusable software

components with RTCA DO-178C / EUROCAE ED-12C certification

evidence in a safety-critical application is well documented13

and has been applied successfully to VxWorks certification in a

federated application on an FAA program.14

The decoupling of the module OS and partitions in VxWorks 653

through the use of spatial partitioning enables this concept to

be extended further. Now, a VxWorks application that has been

previously certified to DAL C can be used in a separate partition

on the same IMA platform as a new DAL A application, without

the DAL C application needing to be recertified to Level A. This

technique can also be applied to I/O drivers and networking

stacks (such as TCP/IP). These are placed into a separate VxWorks

653 I/O partition that is isolated from both the module OS and

application partitions. Communication with application partitions

is achieved through the use of ARINC ports, and interaction with

the module OS is restricted, preventing uncertified code from

affecting the correct operation of the module OS or application

partitions (see Figure 7).

At the time of writing, the FAA and EASA have not yet issued formal

policy on safety certification on multi-core processor architectures.

However, EASA released the MULCORS15 report on multi-core

research, and the FAA released the CAST-32A position paper16 on

multi-core processors that describes a number of objectives for

use of multi-core processors in a safety-critical environment and

in risk areas. Wind River took these objectives into consideration

when developing the DO-178C DAL A certification package for

VxWorks 653 Multi-core Edition in order to minimize certification

risk on multi-core programs.

SUMMARY

The avionics industry is in the midst of a major shift toward IMA,

even though the continued evolution of IMA architectures and

standards presents challenges for standards organizations, OEMs,

and commercial vendors alike. VxWorks 653 Platform provides

an integrated device software platform that brings together a

standards-compliant COTS RTOS and all of the tools needed to

successfully develop safety-critical IMA applications. The platform

not only enhances developer productivity, it also makes sure

that the complexity and effort involved in certification does not

impinge on developers. In addition, the heterogeneous support

for ARINC 653, Ada, POSIX, FACE, and VxWorks applications in an

IMA environment facilitates maximum software reuse and porting

of existing federated applications to VxWorks 653. With VxWorks

653 Platform, Multi-core Edition, this feature is now extended to

legacy platforms and OS environments by employing multi-core

processors and hardware virtualization to serve as an asset bridge

for migration of both federated and IMA legacy platforms.

10 | White Paper

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™

Figure 6. VxWorks 653 device driver model

Hardware

APIC

Device
Device
Driver

Virtual
Device

Task

Virtual
Device Safe IPC

Virtual
Device
Driver

Virtual
Device
Driver

POS#3

Safe IPC

POS#2POS#1

REFERENCES

1.	 RTCA DO-255/EUROCAE ED-96, “Requirements Specification

for Avionics Computer Resource (ACR).” www.rtca.org and

www.eurocae.net.

2.	 ARINC Specification 653, “Avionics Application Software

Standard Interface.” www.arinc.com.

3.	 “Major Organizations Achieve FACE™ Conformance as Pro-

gram Gains Momentum,” press release, The Open Group,

7 March 2017. http://www.opengroup.org/news/press/Major

-Organizations-Achieve-FACE%E2%84%A2-Conformance

-as%20Program-Gains-Momentum.

4.	 John Rushby, DOT/FAA/AR-99/58, “Partitioning in Avionics

Architectures: Requirements, Mechanisms, and Assurance,”

March 2000.

5.	 ARINC Specification 653 P1-3, “Avionics Application Software

Standard Interface,” November 15, 2010. www.arinc.com.

6.	 P. Parkinson, F. Gasperoni, “High-Integrity Systems Dev-

elopment for Integrated Modular Avionics Using VxWorks and

GNAT,” 7th International Conference on Reliable Software

Technologies, Ada-Europe, 2002. http://link.springer.com/

chapter/10.1007/3-540-48046-3_13.

7.	 POSIX Specification, ANSI/IEEE POSIX 1003.1-1995; ISO/IEC

standard 9945–1:1996.

8.	 RTCA DO-297/EUROCAE ED-124, “Integrated Modular

Avionics (IMA) Development Guidance and Certification

Considerations.” www.rtca.org and www.eurocae.net.

9.	 RTCA DO-326A/EUROCAE ED-202A, “Airworthiness Security

Process Specification.” www.rtca.net.

10.	Jean Paul Moreaux, EADS-Airbus, “Evolution of Future Aircraft

Data Communications,” NASA Workshop on Integrated CNS

Technologies, May 2001.

11.	A. Baker, P. Parkinson, “Cybersecurity Enhancements for an

ARINC 653 Safety-Critical Avionics Platform,” Proceedings of

the 26th Safety-Critical Systems Symposium, February 2018.

https://www.researchgate.net/publication/323019107_Cyber_

security_enhancements_for_an_ARINC_653_safety-critical_

avionics_platform.

12.	RTCA DO-178C/EUROCAE ED-12C, “Software Considerations

in Airborne Systems and Equipment.” www.rtca.org and

www.eurocae.net.

13.	FAA Draft Notice, N8110 RSC. www.faa.gov.

14.	“Raytheon to Deliver Advanced Wide Area Navigation

System to the FAA for Certification using Wind River’s

VxWorks Operating System,” Wind River, February 5, 2002.

www.windriver.com/news/press/pr.html?ID=393.

15.	“MULCORS—Use of MULticore proCessORs in airborne

Systems,” Final Report, Research Project EASA. 2011/6,

December 16, 2012. easa.europa.eu/system/files/dfu/CCC_12_

006898-REV07%20-%20MULCORS%20Final%20Report.pdf.

16.	“Multi-core Processors,” Certification Authorities Software

Team (CAST) Position Paper CAST-32A, FAA, November 2016.

www.faa.gov/aircraft/air_cert/design_approvals/air_software/

cast/cast_papers/media/cast-32A.pdf.

About the Author

Paul Parkinson is a principal systems architect for aerospace and defense with Wind River in the U.K., where he works with aerospace and defense

customers. Paul is a chartered engineer (CEng) and a Fellow of the Institution of Engineering and Techology (FIET). Paul’s professional interests include

IMA, intelligence surveillance target acquisition and reconnaissance (ISTAR) systems, and information security (InfoSec).

SAFETY-CRITICAL SOFTWARE DEVELOPMENT FOR INTEGRATED MODULAR AVIONICS

AN INTEL COMPANY

™
Wind River is a global leader in delivering software for the Internet of Things. The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support. Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems.

© 2018 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 04/2018

http://www.rtca.org
https://www.eurocae.net/
http://www.arinc.com
http://www.opengroup.org/news/press/Major-Organizations-Achieve-FACE%E2%84%A2-Conformance-as%20Progr
http://www.opengroup.org/news/press/Major-Organizations-Achieve-FACE%E2%84%A2-Conformance-as%20Progr
http://www.opengroup.org/news/press/Major-Organizations-Achieve-FACE%E2%84%A2-Conformance-as%20Progr
http://www.arinc.com
http://link.springer.com/chapter/10.1007/3-540-48046-3_13
http://link.springer.com/chapter/10.1007/3-540-48046-3_13
http://www.rtca.org
https://www.eurocae.net/
http://www.rtca.org
https://www.researchgate.net/publication/323019107_Cyber_security_enhancements_for_an_ARINC_653_safe
https://www.researchgate.net/publication/323019107_Cyber_security_enhancements_for_an_ARINC_653_safe
https://www.researchgate.net/publication/323019107_Cyber_security_enhancements_for_an_ARINC_653_safe
http://www.rtca.org
https://www.eurocae.net/
http://www.faa.gov
http://www.windriver.com/news/press/pr.html?ID=393
http://easa.europa.eu/system/files/dfu/CCC_12_006898-REV07%20-%20MULCORS%20Final%20Report.pdf
http://easa.europa.eu/system/files/dfu/CCC_12_006898-REV07%20-%20MULCORS%20Final%20Report.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf

