
AN INTEL COMPANY

Five Steps to Improving Security
in Embedded Systems

WHEN IT MATTERS, IT RUNS ON WIND RIVER

1 | White Paper

TABLE OF CONTENTS

Executive Summary. . 1

Wake-up Call for Increased Embedded Security . . 2		

	 Striking an Appropriate Balance. . 2

	 Increasing Complexity and Connectivity. . 2

	 Cyber-security and Information Assurance. . 3

Guidelines for Improving Embedded Systems Security. . 3

	 Step 1: Conduct an End-to-End Threat Assessment. . 3

	 Step 2: Leverage Existing Advanced Security Designs. . 4

	 Step 3: Select an Appropriate Run-Time Platform . . 5

	 Step 4: Secure the Applications. . 6

	 Step 5: Adopt Comprehensive Life Cycle Support . . 7

Conclusion. . 7

EXECUTIVE SUMMARY

Headline-grabbing security breaches underscore the need for stronger protective mea-

sures in critical embedded systems, particularly those that control vital infrastructure,

industrial operations, intelligence and defense networks, and even medical devices.

While security breaches have been occurring for many years, in today’s increasingly

interconnected world, they are becoming more prevalent with escalating complexity

challenges. How can embedded device developers balance the need for tighter security

with competing business and market demands, especially given the realities of strict

budget constraints and aggressive deadlines? This paper outlines five steps for building

additional security assurance into embedded devices by considering the whole product

life cycle—from design and inception, through development and testing, to delivery and

maintenance.

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

2 | White Paper

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

WAKE-UP CALL FOR INCREASED EMBEDDED SECURITY

In 2010, the Stuxnet worm became the first malware with the abil-

ity to break into industrial infrastructure and allow an attacker to

take control of critical systems. This worm was designed to attack

the centrifuges used in Iran’s nuclear program, presumably setting

the program back by years. Stuxnet could infiltrate programmable

logic controllers (PLCs) and install malicious code on them. For

example, the PLCs could be programmed to run a centrifuge into

a destructive spin, overriding safety lockouts.

Security is not a new concern for certain classes of embedded

systems. Military and government systems hold security as one of

their primary design goals. What is emerging is the heightened

awareness of commercial control systems and critical embedded

systems that work in our key infrastructure. With the increasing

connectivity of commercial embedded systems to desktops, lap-

tops, mobile communication platforms, the Internet, and cloud

architectures, many PLCs were not designed to ward off network

intrusion; designers typically considered the private control sys-

tem network to be secure. Stuxnet, for example, could attack

through desktop or laptop computers hooked into internal net-

works that host the target control systems. Threats today are even

more sophisticated and can come from indirect sources, forcing

embedded designers to include more device safety and security

requirements into their core product designs.

Striking an Appropriate Balance

Device security has become a high priority or a “must-have” capa-

bility. But it can add platform requirements that increase develop-

ment complexity and, ultimately, cost. In addition, a wide number

of vulnerable embedded systems with inadequate security strat-

egies are already deployed in highly networked, interconnected

environments. The demand for cloud computing increases device

connectivity, which further complicates the security landscape

because unsecure devices on the network introduce additional

weak points for attack.

An appropriate balance of business requirements with security,

functionality, and performance of the device in the intended

market needs to be achieved. Securing a device must not cause

its delivery to extend beyond the forecasted schedule or cost.

Security is an important component of many devices. But it may

be marginalized because some designers do not see it as a dif-

ferentiating feature but rather as an expected capability.

Device designers should assess three things: 1) the importance

of the assets on their products that need to be made secure, 2)

the anticipated operational environment’s threat exposure, and

3) the appropriate measures to be taken to protect the assets

for mitigating the threats. In other words, a determination of an

appropriate level of security needs to be established, one that is

relevant for the device, its marketplace, and its intended deploy-

ment environment. Securing a device is a continuous effort that

spans the entire life cycle of the product, from architectural design

through deployment and end of life. Planning and budgeting for

safety and security updates throughout the entire product life

cycle, along with future threat protections, are essential for any

connected device environment.

Increasing Complexity and Connectivity

Embedded devices have traditionally run in relative isolation and

have therefore been protected from a wide range of security

threats. Today’s devices, however, are often connected to corpo-

rate networks, public clouds, or the Internet directly. Defense and

intelligence networks also plan to embrace cloud capabilities and

leverage commercial smartphone platforms while maintaining

highly secure domains. This wide connectivity yields substantial

gains in functionality and usability but, as discussed previously,

also makes devices more vulnerable to attack, intrusion, and

exploitation. This new “connected era” is elevating secure con-

nectivity to an essential system requirement where it may not been

a top concern in past projects. Often the embedded hardware and

software from the previous-generation devices were not designed

to enable secure connections or to include network security com-

ponents, such as firewalls, intrusion protection, or other security-

focused functionality. Additionally, developers cannot assume

network environments will be private and protected, nor can they

predict how their devices might be connected in the field. And

they cannot predict the impact of future connected devices on

their products.

The most efficient way to strike the correct balance between

device capability and security is by defining and prioritizing the

device security requirements with the rest of the system and its

deployment environment, including the network environment. For

maximum efficiency, this should be done early in the product life

cycle.

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

3 | White Paper

Cyber-security and Information Assurance

In many cases embedded systems differ from enterprise IT sys-

tems in that they directly control processes and equipment that

are part of key infrastructure. The key security concern is the pos-

sibility an enemy can break into the system and control devices

remotely and shut them down, make them behave abnormally,

or worse, cause equipment failure and destruction. In the enter-

prise world, security priorities are associated with information

breaches and sensitive data exposure. However, for embedded

device security, it’s important to consider both the safe and correct

behavior of the system and the data it stores or transmits. “Cyber-

security” is a relatively new term and is used interchangeably with

“information assurance.” Information assurance, however, has a

formal definition: “measures that protect and defend information

and information systems by ensuring their availability, integrity,

authentication, confidentiality, and nonrepudiation” (National

Information Assurance Glossary, CNSS 4009).

Cyber-security is being used more generally in the press and is

defined in the dictionary as “measures taken to protect a com-

puter or computer system (as on the Internet) against unauthor-

ized access or attack.” In this paper, and to align with how the term

is being used in the embedded systems market, cyber-security

means protecting an embedded device from attack to ensure

correct and safe operation in its operating environment while still

protecting sensitive data (as applicable).

For information assurance designers, the focus is on protecting

and preserving data that the devices store or transmit. This data is

typically confidential and, in government and military applications,

can be highly sensitive, such as top secret data. The embedded

device must be designed so that it is very difficult for an attacker to

gain access to it, thus maintaining the integrity of stored or trans-

mitted data. This protection should guard against a wide range of

threats, from external network-based attacks to physical access to

the device.

No manufacturer wants its devices to be easily disrupted by

attacks or easily vulnerable to losing sensitive data. Many classes

of devices do not handle sensitive data, yet their correct and safe

operation is paramount. As machine-to-machine (M2M) commu-

nication expands in our infrastructure (e.g., the smart electrical

distribution grid, cloud computing environments), automation

devices become safety critical and must properly handle confiden-

tial information in a complex, connected environment.

GUIDELINES FOR IMPROVING EMBEDDED SYSTEMS SECURITY

Embedded systems designers should consider the following five

high-level steps when addressing security. This is not a prescrip-

tive methodology, yet it is intended to highlight an approach that

looks at embedded security as a series of development life cycle

decisions.

Step 1: Conduct an End-to-End Threat Assessment

Improving the security of an embedded device starts with iden-

tifying the potential threats. These threats must be evaluated in

the context of the device manufacturer, operators (if the device is

provisioned in such a way), and end users, including their usage

Threat
Assessment

Complete Device
Security Assessment

Security
Optimized

Design

Separation of System
Components

Use of Security-
Enabled Features

Secure
Run-Time
Selection

Certified Run-Time
Platform (Hypervisor

and OS)

Hardened/Certified
Middleware

Development
Life Cycle
and Tools

Use of Code Analysis
Tools

Security Test Suites

What-if Vulnerability
Analysis

Application
Protection

Use of Whitelisting

Incorporate
Reputation-Aware

Application Behavior

Supported
I/O

Protocols

Environ-
ment

Figure 1: Five steps to improving security in embedded systems

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

4 | White Paper

environment. Threats are described in terms of an attack vector

(how the attack is perpetrated on the device) and the vulnerability

it exploits (the weakness or fault in the hardware or software that

allows the attack to exploit the device). Examples of attack vectors

include a wired Ethernet connection on the device used for com-

munication, and common services such as web (HTTP), FTP, SSH,

and debug agents. Examples of vulnerabilities include weak or

default passwords, coding errors such as not protecting against or

checking for stack or buffer overflows, or even design errors such

as how the device powers up. The difficult part of security design

is predicting and preventing the attack vectors and vulnerabilities

in advance.

A device needs to be evaluated within a large scope if a security

threat assessment is to be successful. Indeed, many current security

threats result from thinking a device won’t be used in a certain way.

Stuxnet exploited PLCs that were on the same network as infected

desktop and laptop computers. Although not initially connected to

the Internet, it’s likely that private control system networks will have

diagnostic or development computers connected at some time.

In evaluating security threats, it is important to consider the larger

picture: Operators (e.g., wireless network providers) and end users

(e.g., electrical grid controllers) are part of the equation.

In end-to-end threat assessment of embedded devices the follow-

ing needs to be considered, at a minimum:

•	 A complete product life cycle analysis needs to be per-

formed: This analysis must include developers, manufactur-

ers, operators, distributors, retailers, and end consumers to

capture the total usage impact on device security. It is impor-

tant to determine the priority of information assurance and

cyber-security.

•	 Possible entry paths for attacks into the system need to be

defined and described: Possible paths to consider include net-

work access as well as other potential paths. For example, is it

possible to compromise a device via physical access such as USB

or serial ports? Once the entry points are ascertained, the attack

possibilities need to be evaluated. For example, is the device

vulnerable from web access via TCP/IP port 80? Does the device

use a firewall? If not, what TCP/UDP ports are open? Similarly,

for physical machine access, can the device be booted from an

attached USB device? An analysis is required of the permuta-

tions possible from physical access plus system vulnerabilities.

•	 A risk matrix needs to be built: Because of the vast number

of permutations possible, a risk assessment needs to be per-

formed. What is the probability of an attack via each channel?

What is the impact of exploitation via this channel?

•	 A mitigation strategy needs to be created based on the pri-

ority list: For example, partitioning a system into higher seg-

ments of higher and lower security might be a sound strategy.

In some cases, this can lead to more complex architectural and

design requirements for the device but can dramatically reduce

testing and update costs later in the product life cycle.

•	 Creation of a design specification that includes security

needs to be done based on the previous assessments: This

is part of the overall system design but should be treated with

high priority. An overall plan for designing, implementing, test-

ing, and maintaining security features and mitigations needs to

be part of any existing or new development plan.

Step 2: Leverage Existing Advanced Security Designs

A number of technologies and design methodologies have

evolved to address the ever increasing threats to connected

devices. An increasingly important paradigm for advanced security

designs is using proven commercial off-the-shelf (COTS) system

components that can improve device security while controlling

costs. Examples of such security components include embedded

virtualization, operating system partitioning, and middleware, and

partitioning these components into virtual run-time environments

for increased separation and abstraction.

Virtualization is gaining popularity in embedded systems because

it enables multiple operating systems to run on a shared hard-

ware platform. This provides flexibility in system design and allows

designers to get more out of their hardware than with single-OS

systems. In addition, it can provide a foundation for partitioning

a device’s operations into virtual execution environments, which

can enable the separation of concerns and facilitates deploying

higher criticality components with less sensitive code on a shared

platform.

Application partitioning is a useful technique for separating safety-

critical or security-critical portions from the less important system

functions. For example, a multi-OS system might partition a real-

time operating system (RTOS) from the general purpose operat-

ing system (GPOS) such as Microsoft Windows or Linux.

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

5 | White Paper

Vulnerabilities and attacks on the GPOS would then have minimal

impact on the RTOS partition, thus keeping the device opera-

tional. Figure 2 shows an example of such a system.

Component reuse includes more than just reusing your own code

in system design; at a higher level it means using existing com-

ponents that have already met quality and security requirements.

Use of COTS software is an example of component reuse at a high

level—a proven way to reduce costs, time-to-market, and most

importantly, budget and schedule risks. Many COTS products

have gone through extensive security testing, validation, and cer-

tification and can be excellent candidates for reuse opportunities

in next-generation device software design. Designers can imme-

diately leverage the proven security features and artifacts of these

products, features that would be difficult to develop and support

commercially for a single product development effort.

Step 3: Select an Appropriate Run-Time Platform

Selection of an appropriate commercial run-time platform for an

embedded system is a key consideration. Implementing a system

with components that have COTS security evidence can increase

the security and reduce the cost of development of the overall

platform. There can be additional benefits of using COTS software

components instead of roll-your own (RYO) code or self-ported

and maintained open source code.

Some COTS run-time platform components that can help in devel-

oping a secure device include the following (see Figure 3):

•	 Hardware support layer: Run-time platforms such as hyper-

visors and operating systems require low-level hardware sup-

port layers that contain device drivers for the specific hardware

devices. Relying on commercial hardware support is a critical

first step in leveraging off-the-shelf components, but these

should be acquired through known and trusted suppliers.

Commercial offerings, such as board support packages (BSPs),

are optimized for the target hardware, come with technical sup-

port and maintenance, and in some cases have certification

evidence to support insertion into safety and security-critical

environments.

•	 Embedded virtualization: To provide additional system

integrity, an embedded hypervisor can provide virtualization

to enable sophisticated partitioning schemes, multi-OS capa-

bilities, and support of multi-core and other processor architec-

tures. Running on top of a commercial hardware support layer,

an embedded virtualization component with commercial cer-

tification evidence can accelerate and improve the security of

devices with mixed-criticality partitions.

•	 Real-time operating system: Many embedded systems require

small footprint, strict timing constraints, or safety/security certi-

fication; for these, a real-time operating system is the operating

system of choice. The following should be considered in RTOS

selection:

–– Secure default configuration: Is the RTOS available in a

secure default configuration? For example, are nonessential

services turned off and network ports blocked?

–– Secure communications: Does the operating system sup-

port services, such as a network stack, that implement and

meet secure communications standards? Does the RTOS

include encryption capabilities? Does the RTOS stack service

allow for use of secure sockets, virtual private network (VPN),

IPsec, and so on?

–– Certification: Does the RTOS need to have COTS safety and

security certification that’s applicable to your implementa-

tion? Has the stack been tested and passed security tests

and verifications?

–– Security response: Does the vendor treat security issues

with a high priority? Is there a security response team and

process in place?

Middleware

Hardware

Middleware

Wind River Linux

Hypervisor

VxWorks

User
Application GUI Embedded

Application

Partition

Inter-process Communication

Figure 2: Example of a partitioned architecture using a hypervisor

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

6 | White Paper

•	 Embedded general purpose OS: Standard Linux or Microsoft

Windows general purpose operating systems are not consid-

ered extremely secure. They are best used in a partitioned

environment, such as with an embedded hypervisor, that can

provide additional security features. Running GPOSes in a parti-

tioned environment enables their execution in isolated environ-

ments, separate from other, possibly more critical, parts of the

system.

•	 Middleware: Depending on the system requirements, the

middleware layer can include basic and advanced functional-

ity in networking, wireless support, and communication security

(IPsec, IKE, VPN support, etc.) as well as other services such as

audio, video, and graphics. The network middleware selection

is particularly important for supporting network security via

encryption libraries and communication protocols such as SSL

and IPsec. Additionally, intrusion protection can be enhanced

via firewall and use authorization support at this level. Using cer-

tified middleware, such as products certified under Wurldtech’s

Achilles Certification program, is prudent for the building

blocks of embedded systems. The selection of human interface

middleware services (e.g., audio, video, and graphics) must be

done with a security focus; otherwise these could lead to gaps

in the overall system security and introduce vulnerabilities.

•	 Virtual system simulation: System, board, and processor-level

simulation can accelerate software and hardware integration,

providing ubiquitous platform availability, especially in embed-

ded development life cycles where reference hardware may not

be available. A system simulation tool enables sophisticated

debugging, testing, and analysis techniques that hardware can-

not provide.

•	 Tools: Tools for testing, debugging, and static analysis play a

critical role in identifying improper design and preventing unse-

cure code from entering the project early in the life cycle. Test

management and simulation tools greatly increase embedded

development productivity.

Step 4: Secure the Applications

Modern embedded systems are much more than the traditional

dedicated devices with a single mode of operation. Embedded

systems now often host multiple applications and typically have

their capabilities augmented through software and hardware

updates and upgrades over the life of the device. As with desktop

and server applications, it becomes critical that embedded soft-

ware applications have secure capabilities because they are likely

to be the target of malicious code or data breaches.

Updatable or upgradable embedded devices can use a tech-

nique called “whitelisting” to improve security. Whitelisting allows

devices to only accept applications for download that are known

to be safe for execution. Any software not on the whitelist will

not be installed and will be rejected by the system. Blacklisting,

a related technique that provides a list of known malware and

viruses, is used by systems to reject downloading or installing any

software that is on the blacklist. Because blacklists are much larger

than whitelists and change much more rapidly, embedded devices

typically lack sufficient computing resources to handle on-the-fly

blacklisting and likely can’t support the frequent updates, data

storage, and network connectivity required. This makes whitelist-

ing an attractive and effective technique for embedded systems.

Another technique that can be used to increase security involves

evaluating the reputation of the source of data. When data arrives

from sources with no reputation or a bad reputation, the appli-

cation can determine what steps are required to verify the data’s

integrity or to ignore or block it altogether. Use of reputation

awareness can also enhance system performance: When data is

transmitted by trusted sources, applications can accelerate secu-

rity screening and process the data more quickly.

Development and Test Tools

Network and
Communications Stack

Operating Systems
General Purpose or RTOS

Embedded Virtualization
Hypervisor/Separation Kernel

Hardware Support Layer

Virtual System Simulation

Figure 3: Embedded development and run-time solution stack

AN INTEL COMPANY

™

FIVE STEPS TO IMPROVING SECURITY IN EMBEDDED SYSTEMS

Step 5: Adopt Comprehensive Life Cycle Support

Security constantly evolves as threats change over time. As a

device becomes popular (Stuxnet targeted a popular PLC device)

or exists in the market longer, it can become more susceptible to

attack. Many devices in the past were not designed to be field

programmable or to accept updates without significant modifica-

tions. Those days are gone. Devices today must be field upgrade-

able not only to change and improve functionality but to resolve

future security issues.

Including security planning in the life cycle management of

your device is critical. Moreover, it is important that organiza-

tions respond rapidly to security vulnerabilities as they arise.

Equally important is that your COTS suppliers match your security

responsiveness.

At a minimum, embedded systems designers and developers

must adopt the following product life cycle design aspects:

•	 Integrate security into the entire product life cycle: Security

must be designed into embedded products and systems from

the very beginning and be a foundation of the entire system

life cycle. A secure architecture cannot be bolted on at some

future date.

•	 Architect for change and keeping your product current:

Devices and systems require the ability to be updated, patched,

and modified over time. It is critical to design continuous secu-

rity monitoring and updating into product support plans.

•	 Design and test for security: Security vulnerabilities are a class

of software requirement deficiencies—in design or implemen-

tation—and the earlier they are caught in the product develop-

ment life cycle, the less costly it is to fix them and harden a

system against attack. Security testing must involve defining the

boundaries of a system and determining methods of exploit-

ing weak defenses along these boundaries. Techniques such

as fuzz testing or penetration testing, which simulate attack

vectors used by malicious hackers, can also be effective tools.

Management and automation of security testing, as well as use

of simulation tools, can greatly increase embedded develop-

ment productivity and allows for more comprehensive examina-

tion of products than ad hoc testing.

•	 Assign a high priority to security vulnerabilities and defects:

Security needs to be considered a high priority not only in design

but also during support and maintenance. Vulnerabilities, when

discovered by the security community, become public knowl-

edge quickly. Companies need to respond and correct their

products with agility as these unplanned vulnerabilities arise.

•	 Create a security response team: This team is needed to

address vulnerabilities, draft responses, communicate internally

and externally, plan for potential product updates, and man-

age the delivery of those changes. A security response team

is usually cross-functional, for example, including software and

hardware development, software quality assurance, customer

support, product management, and technical publications.

CONCLUSION

With these five steps, companies can make fundamental progress

toward minimizing their risk and exposure to security threats with

their highly connected embedded products. Designing security

into embedded systems today is a core necessity that requires an

increased commitment by all aspects and levels of a company to

achieve the end-to-end high assurance coverage demanded in

our increasingly connected world.

Wind River is a global leader in delivering software for the Internet of Things. The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support. Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems.

© 2012 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 01/2012

AN INTEL COMPANY

™

