
Staging and Testing for the Real World

By Jakob Engblom

The Internet of Things in the Lab

WHEN IT MATTERS, IT RUNS ON WIND RIVER

TABLE OF CONTENTS

Introduction . 3

 Software Testing for IoT . 3

 Staging for IoT . 4

Software Testing and Staging Using Simulation . 4

 Drivers and Board Support . 5

 Single Nodes . 5

 Wireless Protocols and Communications . 5

 More Network Nodes . 6

 End-to-End Features and Integration . 6

 Security and Authentication . 7

 The World and Environment . 7

 Tools . 8

 Demonstrations . 8

Debugging . 8

Simulating Nodes and Gateways . 8

Including the World . 9

Simulating Networks . 9

Including the Servers . 11

Scaling Up . 11

Tuning and Calibration . 12

Summary . 12

THE INTERNET OF THINGS IN THE LAB

2 | White Paper

ABSTRACT

Developing and testing software and configuration variants for industrial Internet of Things

(IoT) applications and systems is a challenge . The systems can be physically large, and

often contain hundreds or thousands of nodes, which is tough to manage in a physical lab .

Testing software that will run across thousands of nodes requires the ability to automate,

inspect, and control tests, but automating tests across hordes of physical machines is not

easy . These challenges can be overcome by using virtual platforms and simulations of wire-

less networks and the environment . This converts the difficult hardware into software simu-

lations that can be created, configured, and controlled with ease . In this paper, we cover the

techniques for IoT system simulation and testing that we have developed and discovered

over the past year, and how to build scalable testing systems .

THE INTERNET OF THINGS IN THE LAB

3 | White Paper

INTRODUCTION

Over the past few years, IoT has gone from an interesting idea to

mainstream technology that is a must-have for almost every com-

pany selling any kind of product . In this paper, we discuss how to

better test software for industrial IoT systems and applications . By

industrial IoT, we mean applications where a single entity deploys

fairly large networks of many IoT nodes for some kind of business

or professional purpose . Most consumer applications only involve

a small number of devices, and have a somewhat different testing

profile .

A typical industrial IoT system follows the hierarchy shown in

Figure 1 . We have a large number of nodes or devices that interact

with their local physical world . The nodes are typically low-power,

cheap devices that are used in hundreds or thousands of units on

a single site or in a single setup . A number of nodes are connected

to a gateway .

The gateway is a more powerful machine that can run heavy-duty

security software and perform extensive computation on its own .

On one side, the gateway connects to the low-power network or

networks used by the nodes, and on the other side it connects

to the server . The gateways are communications providers and

intermediaries, helping bring structure to the system and protect-

ing the nodes from Internet-based attacks . Gateways can also be

aggregators and perform data fusion and buffering locally, before

passing data on up the chain to the server . A single gateway is

typically responsible for a set of nodes in some limited geographi-

cal area like a single retail shop or single residential building . You

might have several gateways for a single site in order to increase

reliability and availability .

The server or backend, often hosted in the cloud, is where the data

from the nodes meets the business logic of the enterprise . Data is

collected from nodes via the gateways, and commands and con-

figurations are pushed out to the gateways and nodes . The server

interacts with the wider world—for example, for an agricultural

system, it might use weather forecasts and market information to

determine when, what, and how to plant and harvest crops . Each

server is connected to many sites and many gateways, and a very

large number of nodes .

Users of the system often interact with the server from their per-

sonal phones, tablets, or PCs, using a Web browser or custom

applications .

Not every system follows this hierarchy strictly, of course . There

are cases where individual leaf nodes talk directly to the servers,

or where there are no servers involved and all computation is done

in the nodes or gateways, or where users interact directly with

gateways or devices . However, such variants do not fundamentally

change the testing challenges of many machines deployed in a

network interacting with the real world and application code .

Software Testing for IoT

Testing software and configuration variants for IoT systems is a real

challenge when using physical hardware . You need many hardware

nodes, preferably spread out across a large physical area . Testing

wireless networks requires the ability to somehow isolate or con-

trol wireless connections between lab machines and between the

lab and surrounding world . Inducing sensor data and network

failures might require very expensive hardware setups even for

very cheap nodes1 . Changing the network topology or physical

configuration of a system requires extensive manual work, and is

difficult to automate or do in a repeatable manner . Simulation of

the IoT hardware and network allows you to solve many testing

problems in a very efficient way .

Node /
Device

 Gateway

×M ×N
Physical
World of
the Node

Server/
Cloud/
Backend

The Big
 World

Phone/
Tablet/
PC

Figure 1. IoT hierarchy

As shown in Figure 2, our primary concern is testing the software

that powers an IoT system . Just like other modern systems, user

value and competitive advantage in IoT is mostly derived from the

software; basic sensor node hardware is a commodity that is fairly

easy to obtain and hard to fundamentally differentiate a product

with . In the end, the software and data aggregation are what make

IoT systems smart and valuable to users . Software is continuously

developed and improved, even after the hardware is developed

and the system deployed into the field . Users expect software

updates to their systems, to add features, fix bugs, and plug secu-

rity holes . You cannot ship it and leave it; IoT software develop-

ment has a lot more in common with traditional desktop or mobile

software development, where maintenance and updates and

upgrades happen long after the software is first shipped on the

hardware .

In this paper, we discuss how fast, virtual platforms2 can be used to

create simulations that will help you test the software for your IoT

systems better and more efficiently . It is worth noting that there

are many simulation methods for IoT systems that do not run the

real code or include the actual node software in their scope . When

looking at an IoT simulator, it is important to make sure that the

simulation abstraction level and content match what you want to

achieve .

Staging for IoT

Before an IoT system is deployed into the real world, the devel-

oper should ideally test that their software and system design work

in the context in which they will be deployed . This conundrum is

a common problem in the world of Web, cloud, and server soft-

ware development, where new software cannot just be deployed

straight from the lab—you need to check that it works in the real

context first .

The standard solution for this problem is to have staging setups

in place . A staging setup or staging server is a system that is con-

figured to be like the real production system, but is still under the

control of development or operations and not being used by real

users . It is a test setup modeled after the real world . The staging

setup is used to check that software can be installed or upgraded,

started, and run, without being tripped up by some quirk of the

real system . Staging is about checking that software will work in

the context of a particular complete system, not just on a single

device or in the development lab .

With IoT, live software updates will become more common for

embedded systems, and thus staging becomes a more impor-

tant part of software development . You want to test a complete

integrated software system with a particular topology of nodes,

networks, and gateways, to make sure it works not just in the stan-

dard tests, but also in the real system . The staging setup would

introduce the actual node IDs and addressing from the real world,

and might reflect aspects like mixing an old version of the base

OS with newer software applications . Correct use of staging is a

crucial tool to avoid embarrassing discussions centered around

the lines, “It works in our lab” vs . “It does not work in my shop .”

SOFTWARE TESTING AND STAGING USING SIMULATION

IoT software testing is fundamentally complicated by the fact that

IoT systems are large, distributed, networked systems that have to

work in the rough and dirty environment of the real world . Working

with a single node is not all that difficult, but working with hun-

dreds or thousands of nodes makes the testing, development, and

staging problem exponentially more difficult .

To test using physical hardware, you want to have the wireless

nodes spread out over a large area so that not all are in contact

with each other . In practice, this requires using entire buildings or

campuses as the “lab .” Setting up and maintaining such a setup

is a significant amount of work, with labor costs quickly dwarfing

the cost of the nodes themselves . Real-world labs are also typically

limited in the number and variety of nodes and topologies that

can be offered3,4 .

THE INTERNET OF THINGS IN THE LAB

4 | White Paper

Node/
Device

 Gateway

×M ×N
Physical
World of
the Node

Server/
Cloud/
Backend

The Big
World

Phone/
Tablet/
PC

Data Data

Actions

Software Software Software

Scope of This Paper Primary Simulation Target

Figure 2. IoT system testing

Drivers and Board Support

At the lowest level, IoT systems need to test that drivers and hard-

ware work well together . This test is often done using a single node

or a few nodes, since it is mostly about local issues . Measuring bat-

tery power and driving a complex wireless interface can be worked

out on a single node . Virtual platforms can be used for such devel-

opment, especially if the hardware does not yet exist . However, it

is important to also work on the actual hardware, since low-power,

cheap hardware tends to have quite a few quirks that only show up

in the actual hardware .

Most of the time, IoT systems are based on existing, stable hard-

ware with drivers and board support in place, and the job of the

simulator is primarily to run these driver stacks to ensure that the

same binaries can run on the simulator as on the real hardware .

The main issue facing software developers is how to test the sys-

tem-level functionality, assuming the basic platform is working .

Single Nodes

Some IoT systems do operate as individual nodes connected

directly to the Internet . For such systems, virtual platforms and

simulation are useful, just as they are for any other system . With

virtual platforms, you can implement automated testing and

continuous integration workflows, without depending on hard-

to-automate hardware5 . Testing can also be scaled up in volume

by running the virtual platforms on large servers or in the cloud1 .

Network inputs can be controlled, recorded, and replayed to do

fault injection as well as regression tests .

Wireless Protocols and Communications

Assuming that basic wireless functionality is there, the next step

is to validate the behavior and robustness of the protocols and

networking stacks being used .

You can vary the setup endlessly . There are many cases to explore,

and many of them do not occur until there is a certain volume of

nodes in the system . Wireless networks can have many different

topologies, and a test for a certain size of network needs to take

that into account . For example, Figure 3 shows two ways that six

nodes can be connected to a gateway . In one case, distant nodes

have to rely on mesh networking across peer nodes to get mes-

sages to the gateway, and in the other case, every node can talk

directly to the gateway . These cases clearly subject the networking

system to very different types of stress .

In a simulator, setting up a large network is easy . As illustrated in

Figure 4, you just write a program to deploy virtually and spread

out the nodes over the virtual space you need, and then model

the wireless reachability between the nodes . Instead of manually

handling hundreds of physical items, you manage a single script

or program .

Wireless networks are by nature unreliable, and faults have to be

handled gracefully . What happens in the system when packets get

lost or garbled, or a node never sends a reply that it was supposed

to send? The connection between a pair of nodes might be inter-

rupted due to changes in the physical world (such as a train pass-

ing between two nodes on either side of a railroad track), and what

happens to connections and transmissions in such a case? What

if a source of radio noise (such as a microwave oven) is close to a

particular node, blocking its ability to send by filling the airwaves?

THE INTERNET OF THINGS IN THE LAB

5 | White Paper

E

D

F

CBAGW

E

D

F

C

BA

GW

Topology: Long and Narrow Topology: Centralized

Program 1 Program 2

N
N

N

S

GW

NN N
N

Program 3

GW
N N

×100
N

N
GW

N

N N
N

GWGW

N

S

N

SS

Figure 3. Examples of network topology variations for six nodes

Figure 4. Programmable setups

Such cases are easy to introduce in a simulator, and to replay for

regression testing and to validate that fixes do indeed solve prob-

lems . Using simulation, you can subject software to situations that

are very hard to reliably and repeatedly produce in the real world .

A simulator also has the useful property that it avoids using real

radio networks, and thus does not interfere with other wireless sys-

tems or pick up noise from the outside . In the real world, building

test systems for wireless usually involves special isolated rooms or

boxes that contain and control radio signals1 .

For staging, simulated networks let you precisely model the net-

work and communications topology of a real system, to test the

system software in the context of the real topology . Fault injection

can also be used to test the robustness of the proposed system

to errors .

More Network Nodes

A key aspect of IoT system development and testing is deal-

ing with the scaling up in size of the system . Experience tells us

that fundamentally new phenomena emerge as a system grows .

System behavior has to be tested not just with 10 nodes, but also

with 100 and 1,000 nodes, and across a variety of ways to connect

the nodes . The behavior of the system needs to be tested on a

whole range of scales, from small unit tests or subsystem tests all

the way up to the largest setups imaginable . Often, each system

scale will reveal different issues in the system; this testing is not

just about the very largest setups, but also about making sure

things work efficiently at intermediate system sizes too .

As already mentioned and shown in Figure 4, setting up a large

system is easy in simulation; just run the configuration program

that produces the desired scale . It might be programmed to intro-

duce some element of randomness to each test6, or might be

set up to produce a particular fixed setup for reliable regression

testing .

Networked IoT systems are distributed systems, and distributed

systems introduce timing as an important parameter . Events that

happen too quickly or in a particular order can cause a system to

crash—for example, many nodes restarting at once could over-

whelm the master in a master/slave system . Reproducing such

events in the real world is hard, but in a simulator, repeatability is

a given2 .

IoT systems are also usually heterogeneous . Gateways and nodes

are of different types, and many types of nodes can be expected

to coexist in a network . Simulation offers a way to have an infinite

supply of all types of hardware, making it possible to simulate arbi-

trarily mixed networks to ensure that software works on different

generations of hardware as well in a system with mixed genera-

tions at the same time .

For staging, simulation gives you the ability to program a particu-

lar customer setup as a script—including nodes, gateways, how

they are connected, and their IDs and addresses . Such a customer

configuration can be saved, put under version control, and reused .

Rather than physically reconfiguring a lab setup, you just run a pro-

gram to get the needed setup .

End-to-End Features and Integration

IoT is all about networking and connectivity for systems that

used to be isolated, and thus testing how nodes communicate

with server applications via gateways and networks is necessary

to ensure correct system functionality . Many important workflows

require all parts of a system to be in place to be properly tested .

One essential example is data collection and aggregation . Sensor

values from nodes have to reach the server and be handled cor-

rectly . With simulation, you can test this workflow with everything

from a single node to thousands of nodes . Simulation makes it

possible to test that the server can handle large volumes of data,

and that the system can associate nodes and data even as the

number of nodes increases . It provides a way to retest the server

side with a known set of nodes and data from the nodes, after

the server-side software has been updated . It also makes it pos-

sible to test the server management and user presentation of lots

of nodes, to make sure that the user interface also scales as the

system scales .

Communication in the other direction can also be tested . The

server might push down configurations and commands to gate-

ways and nodes, as well as over-the-air software updates . Software

update mechanisms can be tested, including injecting network

failures or node failures in the middle of the update process to

check restart and robustness .

THE INTERNET OF THINGS IN THE LAB

6 | White Paper

The interface and collaboration between nodes is another test

subject . Many IoT networks are based on mesh networks that

need to configure themselves spontaneously and discover new

network members automatically . Testing that varies the number

of nodes and the timing of when they are powered on and try to

join the network is very hard to reliably test in hardware, but easy

to set up in simulation . Simulation allows you to test things like

bisecting a network to see how each separate half develops, and

whether the nodes realize that they have been cut off from the rest

of the system .

Another aspect of end-to-end testing is doing continuous inte-

gration (CI) with the IoT system . In a CI system, new code is first

tested in a small context (like a single node or gateway), and once

that passes, in successively larger contexts until it is tested in the

entire system . To enable CI for IoT, simulation makes it easy to

prepare setups that cover various levels of integration, such as a

single node, a nodes plus a gateway, a small set of nodes with a

gateway, and so on5 .

Integration and end-to-end testing is even more important when

IoT systems are built by multiple different teams or companies .

In such cases, building a shared simulated test rig and using CI

enables gradual integration and reduces development risk .

Security and Authentication

Security is an essential component of any IoT system, and must

be part of regular testing . Testing should include mechanisms

for onboarding of new devices and retirement of old devices .

Managing the membership of trusted devices is one of the key

problems in IoT security . System robustness to network-level

attacks must be explored, and the vulnerability of nodes and gate-

ways assessed .

Simulation can also be used to quickly get nodes back to a clean

state, in order to test onboarding and authentication mechanisms .

With real hardware, you need to be very careful how you clean up

after a test or initialize a node before a test so that previous tests

do not affect the results . In simulation, you can start all tests from a

known initial state, and avoid the risk that tests fail or succeed due

to an accidentally inherited state .

Using simulation, it is possible to connect nodes to network test-

ing tools and fuzzers, and to record and replay the results of such

testing—without worrying about impacting other machines or

having the outside world leak into the wireless network . As already

mentioned, testing can be parallelized and performed automati-

cally each time new software is released .

The World and Environment

IoT is fundamentally about interfacing computers with the physi-

cal world in order to sense it and control it . To test software that

interacts with the real world, there has to be a way to provide data

to sensors and somewhere to send the output from actuators .

For testing with physical hardware, people often replace the input

and output systems with simple software stubs running on the

same system, since it is very hard to provide physical inputs to real

sensors in a controllable way . There are cases where real inputs

and outputs are connected to digital simulations of the external

world, but those require large and expensive custom setups .

In simulation, on the other hand, it is quite easy to provide a realis-

tic environment to a simulated control system . From the perspec-

tive of the target software running on the simulation, it uses the

same hardware interfaces to interact with the external world as it

would on physical hardware, such as analog-to-digital converters

(ADCs), digital-to-analog converters (DACs), and general-purpose

I/O (GPIO) . These devices then connect to a simulation of the

physical world (or sometimes pass through to the real external

physical world of the host machine)5 .

The physics simulation can be a scripted list of values to provide as

inputs, or a dynamic simulation of the world . A key benefit of using

a simulation for the world is that it is possible to change what the

world does and its parameters in order to test code paths for many

different real-world situations . For example, a fire alarm could be

given a set of stimuli that is supposed to trigger the alarm, as well

as similar sets of stimuli that are not really a fire . An air-condition

control unit could be forced to work on really hot days, as well as

really cold days . There would be no need to wait for a certain type

of weather to appear outside the lab, or to ship equipment around

to chase interesting stimuli .

Thus, simulated physics provide a crucial source of stimulus for

IoT testing, and the physics simulation is an important part of the

testing solution, as shown in Figure 2 .

THE INTERNET OF THINGS IN THE LAB

7 | White Paper

THE INTERNET OF THINGS IN THE LAB

8 | White Paper

At the server end of the system, there is also the big outside world

(or markets) and large-scale environment . This world might be

represented by the real world, but in order to do scripted closed-

loop control experiments, it is often a good idea to simulate it as

well . For example, rather than using current market information or

weather data, information from a specific relevant point in history

can be replayed . Alternatively, a simulation of the external world

can be used to dynamically generate stimuli on the fly . The inter-

face with the big world is normally via some form of Web-based

service interface or database API, which needs to be simulated

as an external network function . The server side normally does

not interact directly with the physical world, and thus sensor-level

simulation is rather unnecessary .

Tools

In addition to testing the IoT system itself, simulation can be inter-

faced with existing development tools to facilitate configuration

and debugging of the system . For example, USB connections from

nodes can be exposed to the host, and connected to the same

tools that would connect to physical nodes . Real-world network

connections can be used to connect various existing debug and

analysis tools to the nodes and gateways . There are many cases

where connecting the simulated IoT system to the real world adds

value and allows the reuse of existing tools and workflows with the

simulated systems .

Demonstrations

Simulation can be used to demonstrate IoT software and systems .

We have seen teams use fairly small simulated IoT networks hosted

on a cloud server in order to provide a way to demonstrate the

server-side software to customers . Rather than carrying a network

around or relying on a remote lab network hosted in an office,

each demonstrating salesperson can spin up his or her own little

IoT system and use it for demonstrations without having to worry

about synchronizing access to a shared resource or other people

accidentally breaking a demo .

DEBUGGING

It is well known that all testing eventually leads to debugging .

Using a simulator to perform tests provides benefits to the debug

side as well . First of all, you can use techniques like checkpointing

and record–replay to capture and communicate issues . When an

unexpected or wrong result is detected in a simulated test run, it

is easy to store and reproduce the failing test case in engineering .

This capability makes bug reproduction much easier, and makes it

more likely for the issue to get fixed7 .

Once an issue has been replicated in development, using a simu-

lator to debug the system provides many benefits . In particular, for

a system with many small nodes, the simulation makes it easy to

access any part of the state of any node, without having to physi-

cally connect a cable to a particular node somewhere out in the

field2 . In simulation, it is possible to stop the entire system instan-

taneously and inspect the state with everything standing still . The

state that is accessible for debugging includes the hardware, soft-

ware, and physics .

SIMULATING NODES AND GATEWAYS

So far, we have covered what we want to test, and how simulation

can be used to facilitate testing . We will now discuss the mechan-

ics of how to realize a useful simulation of a large IoT system .

The starting point for the IoT simulation that we propose is the

use of fast, transaction-level virtual platforms2 for the individual

gateways and nodes, and sometimes also the servers . Fast virtual

platforms simulate the hardware of an (embedded) target system,

and run the same binaries that will run on the real system . In our

work, we have used the virtual platform system called Wind River®

Simics®8 . However, most of the techniques we describe here are

applicable to any virtual platform tool, and IoT simulation in the

style described here has been implemented in the past in tools

such as Cooja6 . Google also uses some hardware simulation in

their ChromeCast testing1, although limited to single individual

devices . Many higher-level approaches to IoT simulation have

been proposed where you do not actually run the real code from

the nodes and gateways, but rather abstract their behavior to

host-based programs . However, such simulation does not let you

test the real code, and thus does not do what we want to achieve

in this paper .

As illustrated in Figure 5, the simulation would consist of a large

number of individual systems, the hardware of each of which is

simulated using virtual platforms . The virtual platform accurately

models the aspects of the real system that are relevant for the

target software, such as processor core instruction sets, device

THE INTERNET OF THINGS IN THE LAB

9 | White Paper

registers, RAM, ROM, flash, memory maps, interrupts, timers, and

the functionality of other peripheral devices and I/O devices . The

architecture and hardware of the virtual platforms is entirely inde-

pendent of the host system; for example, running code compiled

for low-end microcontroller ARM® Cortex®-M or Intel® Quark™

core on a powerful Intel Xeon®–based server .

A fast virtual platform typically does not model the detailed imple-

mentation of the hardware and its microarchitecture, such as bus

protocols, clocks, pipelines, and caches2 . By avoiding these details,

a simulation can run fast enough to run real workloads, and can

typically cover between 80% and 95% of all software tests and pos-

sible issues . The underlying assumption, which has been proven

true in very many projects, is that it is possible to create simulated

devices that make the software run correctly, without modeling

the hardware timing cycle by cycle . Virtual platforms suitable for

timing-dependent device driver development do exist, and are

often built as part of hardware design projects for system-on-chips

(SoCs), but such timing-accurate virtual platforms run too slowly to

allow the scaling-up simulation that we want for IoT system testing

encompassing many nodes . For large-scale software and system

testing, fast, transaction-level virtual platforms are the only reason-

able technology choice .

The target software running on the virtual platform includes

low-level firmware and boot loaders, operating systems, drivers,

middleware, and applications . If a system uses hypervisors or con-

tainers, they are also part of the software stack on the platform .

Drivers for I/O devices are part of the setup, and sensors and actu-

ators are represented by simulations of their software-visible inter-

faces (memory-mapped registers, interrupts, and direct memory

access [DMA]) .

As shown in Figure 5, you can run multiple boards inside a single

simulation, along with the networks connecting them . It is possible

to connect the virtual platforms to the outside world via networks

or integrations with other simulators .

Via real-world connections, you can reuse existing software testing

infrastructure and systems that work via software on real nodes4 .

What simulation alone brings is the ability to do automated test-

ing across very large numbers of nodes, which would be literally

impossible to do using physical systems .

INCLUDING THE WORLD

Simulation of the world is typically done using technology distinct

from the virtual platforms used for the computer systems in the

target system . It is common to see simulators written in common

computer languages such as C, C++, Python, or Java, as well

as created using model-driven approaches such as MATLAB®/

Simulink®, LabVIEW, and Esterel . Or a simple list of values might

be provided to a sensor, with no feedback or handling of actuator

output at all . In the most general case, a control system is best

simulated by modeling its dynamic input-dependent behavior

over time . Different levels of modeling might be used for different

test cases, depending on the goal .

Regardless of how the simulation is performed, it needs to be

connected to the IoT node simulators . This has to be done on

each node (as shown in Figure 5) even though the simulation state

might be global (as when modeling a single real system that many

nodes attach to) . It is also important to make sure that simulated

time can be synchronized between the IoT node simulation and

the physics simulation; usually, this is done by having the IoT node

simulation drive the physics simulation to keep up with the simu-

lated virtual time on the computer side .

SIMULATING NETWORKS

Just like virtual platform simulation of computer hardware, the

simulation of wireless networks can be done at many levels of

abstraction . For some applications, it is important to simulate the

NodeGateway

Wireless Sensor Node

Simulated Hardware

Small OS

Sensing/Actuating

Radio Sensor

Node

Gateway

Simulated Hardware

RTOS or Linux

Management,
Security,
Configuration, …

Eth Radio

Gateway Node

Radio Topology
& Reachability

Node
Server

Node Node

Node

Ethernet
Network
Sim

Radio
Network
Sim

Figure 5. Node and gateway simulation

THE INTERNET OF THINGS IN THE LAB

10 | White Paper

actual physical behavior of radio, including the fact that multiple

nodes transmitting at the same time might interfere and effectively

destroy each other’s messages . However, correctly modeling and

simulating concurrent access is very expensive, since all simulated

nodes would then have to synchronize often to check the current

state of the shared medium . This requirement slows down simula-

tion quite radically9 . Another complex aspect of radio is just which

nodes can reach which other nodes, and what the resulting signal

strength is .

In Simics8, we have modeled the IEEE 802 .15 .4 network in a scalable

way, using a transaction-based network model that abstracts from

the physical layer into a packet-level message system . The simula-

tion moves entire packets as a unit, and is designed to expose the

system software to relevant software-visible effects—without bur-

dening the simulation with too much synchronization, which allows

both parallel and distributed simulation for scalability2, 9 .

By contrast, the radio model used in Cooja6 aims to model the

radio aspects, including transmission range and interference due

to simultaneous transmissions . A similar level of modeling is used

in the parallel and distributed DiSenS simulator10 . In both cases,

the more detailed radio model is designed to support low-level

protocol testing, but makes the simulation less suitable for truly

large-scale network simulation . In our simulation, we assume that

the low-level radio system is fairly stable, and focus on the issues for

the software as the system scales up and as new software functions

are added on top the network .

Pure network simulators like OMNeT++ are even more detailed,

modeling the collision-sense multiple access (CSMA) media access,

clear channel access (CCA) detection, and similar features . Such

network simulators also typically include higher-level protocols,

while our model leaves the protocols to the software running on the

nodes (thus testing that software as part of the system test) . Both

ZigBee and 6LoWPAN has been run on top of the IEEE 802 .15 .4

network in Simics, showing the versatility inherent in modeling traf-

fic transport rather than protocols9 . In addition, by modeling at the

packet-transport level, the traffic can be analyzed using tools such

as Wireshark—all those tools see is a packet trace that looks like it

came from a physical network .

In our model, illustrated in Figure 6, all nodes are connected to the

same wireless network, allowing any node to send a message to

any other node . All messages are sent as units (packets) over the

network, and there are no attempts to detect overlapping or simul-

taneous sending of messages from multiple nodes . This is standard

practice for transaction-level modeling of wired networks, which we

now apply to wireless networks . In addition to the packet payload

itself, in a wireless network we have to track the particular radio

channel being used, and the signal strength of the message from

the sender to the receiver .

The message contents are all the message fields as specified in the

IEEE 802 .15 .4 standard . Management of network addresses is left

to the radio models (rejecting messages with the wrong recipient

address, for example) or software . The network simulation simply

delivers the message to all nodes that can receive it, just like they

would in a physical radio network . Unlike wired Ethernet, there is

no switch that makes sure that only the right nodes get a particular

packet .

The channel information is needed to let only nodes that have their

radios set to a certain channel hear the message .

The signal strength is used for three purposes . First of all, it is used

to tell the simulated radio receiver in the receiving node what sig-

nal strength it should report to the software . Second, it is used to

model reachability; by setting it to zero, we can model that a certain

node cannot reach another node . Third, it is used to introduce a

certain level of uncertainty into the simulation: by looking at the sig-

nal strength, a message is randomly dropped . The lower the signal

strength, the higher the risk that a message is dropped (in a way

that is defined by the user with a few parameters) .

Wireless Sensor Node

Simulated Hardware

Driver

Radio Comms

A

C

From/To A B C D

A - 95 75 25

B 95 - 50 60

C 70 40 - 30

D 25 60 35 -

Check for
Packet Drop

Radio

D

Radio
Network
Sim

Message Contents, Channel, RSSI for Sender->Receiver

B

Table of RSSI for Each Node Pair

Figure 6. IEEE 802.15.4 network simulation in Simics

THE INTERNET OF THINGS IN THE LAB

11 | White Paper

Thus, by setting the values in the signal strength matrix, users can

model any radio scenario they want . A script or program can be

used to scatter nodes in a virtual space, computing reachability

based on physical location, or the values can be set according to a

fixed setup to model a particular topology . During the run, the sig-

nal strength values can be changed to model changes in the wire-

less environment . It should be noted that in the implementation,

the storage of the signal-strength matrix is actually done on each

sending node in order to maximize the locality of the simulation .

Finally, in order to model temporary interference, a particular node

can simply be blocked from sending or receiving messages . The

node just will not see any incoming messages or be able to send

anything out until it is unblocked . This simple mechanism allows

us to model many types of contention and interference from the

real world .

It should be noted that this wireless network model can be applied

to other types of wireless networks—it captures the essential

behaviors of the transport layer for packet-based wireless net-

works (assuming that software is responsible for all protocol-level

processing) .

INCLUDING THE SERVERS

Testing the server side of the IoT system is in some ways different

from testing gateways and nodes . The server is a single powerful

system, and often fairly generic or running on a standard cloud .

Thus, simulating its hardware in the same way that we deal with

nodes and gateways is overkill for many types of tests . Instead, as

shown in Figure 7, the server can be left outside of the IoT simula-

tion, with some form of real-world connection being used in the

simulator .

The actual production server could be used for some testing, but

only if it is very easy to separate test usage from real usage . The

risks involved in accidentally leaking test data and test configura-

tions into production have to be taken very seriously .

In most cases, it is better to use a test server setup that is dedi-

cated to testing . This could be an internal server on the lab net-

work, or a special setup on an external cloud-based server . The

test server should have the ability to simulate the world, so that

tests can be carried out with simulated physical I/O on the nodes

alongside matching big world conditions on the server side .

Another popular technique for testing the connection to the server

from the IoT nodes in the field is to simulate the service offered by

the server, which is often known as service virtualization . The idea

is to avoid having to set up a real server with operating system,

databases, and real code, and instead just expose the API that

the nodes and gateways expect using a simple simulation system .

This approach is typically much more lightweight than running a

full test server, and is useful for tests that involve inducing errors

or particular replies into the communications with the server . Note

that this technique is only useful when you do not need to test the

actual implementation of the service; it just uses a simple imple-

mentation rather than the real code, and thus does not add much

to your understanding of the server code that you write yourself .

SCALING UP

One particular issue that is mostly unique to IoT testing is how to

scale up the simulation to hundreds or even thousands of nodes .

Most virtual platforms and simulation technology are used with

target systems that contain at most a handful of distinct machines,

but for IoT, we need orders of magnitude more .

In general, Simics virtual platforms have proven to be fast enough

to run even very large workloads including thousands of target

processors11 . For IoT in particular we have some target system

properties that work to our advantage in speeding up the simu-

lation . First of all, IoT nodes are generally based on low-power,

low-speed processor cores that run at a fraction of the speed of a

typical host PC . Second, most IoT nodes have very low duty cycles,

often waking up once per second or minute or even hour to do

their work—and spending the rest of the time doing nothing but

waiting for the next network packet to come in or a timer to trigger

Node /
Device

Simulation

Node/
Device

Gateway
Physical
World of
the Node

Test
Server

Production
Server

Simulated
Service

Re
al

 N
et

w
or

k

A
PI

Server

The Big
World

The Big
World
(Simulated)

The Big
World
(Simulated)

The Big
World
(Simulated)

Figure 7. Server testing alternatives

THE INTERNET OF THINGS IN THE LAB

their periodic work . The gateways and servers can be busier, but

since there are not that many of those nodes, they do not have

that great an effect .

So we see that typically there is a large amount of idle time in the

system, idle time that can be exploited to accelerate the simula-

tion by using hypersimulation2 . Rather than playing out idle time

cycle by cycle, a simulator like Simics jumps straight to the next

interesting event that would wake up a sleeping node . That means

that a system of low-duty-cycle nodes can be simulated very effi-

ciently (using very few host resources), which is a property that can

be exploited to good effect in large IoT simulations .

Parallelism must also be used to obtain fast simulation . A multi-

core machine with dozens of cores is easy to acquire today, and

when used efficiently, it can increase the speed of simulation com-

mensurably and allow us to simulate very large networks at useful

speeds . To achieve parallelism, in addition to having a paralleliz-

able virtual platform simulator, the network simulation must allow

for loose coupling of the simulation of individual nodes, and the

physics simulation must not require global synchronization (other

than very rarely) .

When these requirements are met, the performance can be rather

astonishing . We have done some experiments to quantify the

possible scalability using a test setup that we built . This setup

uses some fairly beefy IoT nodes based on virtual 500 MHz ARM

Cortex-A9 processors and the VxWorks® 6 .9 operating system,

with a control algorithm that wakes up every second . Each node

has a local physics model attached . With this setup in Simics, we

could simulate 250 nodes with virtual time running twice as fast as

real time, using just 10 host cores . Running a thousand nodes was

linearly slower, ending up with a slowdown of around two . Had

the nodes been set to a lower virtual clock speed, the slow-down

would have been lower as well .

TUNING AND CALIBRATION

Even when testing is done mostly using simulation, it should be

noted that the hardware and its behavior still matters . In the end,

the goal is to build software that works on the hardware and in the

real world, and thus the simulation has to be calibrated and tuned

to properly reflect the real world . This tuning can take the form of

setting appropriate range values for signal strength, and tuning the

delay for radio message sending to reflect bandwidth . The speed

at which virtual platforms process target instructions might need to

be tuned to correspond to observed average instruction times on

the real hardware . Data values used for sensors and the behavior of

the physics simulation will have to be calibrated to correspond to

the real-world scenarios . Note that there are cases when the simula-

tion should deviate from the calibrated behavior . For example, if the

goal is the examine behavior under faulty, extreme, or rare condi-

tions, it is obviously powerful to make it behave differently from the

middle-of-the-road, standard cases .

SUMMARY

In this paper, we have discussed how virtual-platform-based, trans-

action-level simulation can be used to build test beds for large IoT

systems . Our goal is to test how the software on nodes, gateways,

and servers behaves in a system context . By using a particular level

of abstraction, the system simulation can run fast enough that sys-

tem-level testing of real code is enabled . A key enabler for this is a

high-level model of the 802 .15 .4 network, and fast virtual platforms

that can still run the real target code .

In the end, simulation-powered software testing makes it possible

to greatly expand the testing of an IoT system . Simulation can be

used both for in-house testing as part of the development and con-

tinuous integration process, and as a way to set up staging environ-

ments to test how software will behave in a customer setup, before

shipping the software and deploying it in the real world .

12 | White Paper

THE INTERNET OF THINGS IN THE LAB

REFERENCES

1 Brian Gogan, “Chromecast Testing,” Google Test Automation

Conference (GTAC), Boston, MA: November 10–11, 2015 .

2 Daniel Aarno and Jakob Engblom, “Software and System

Development using Virtual Platforms—Full-System Simulation

with Wind River Simics,” Morgan Kaufmann Publishers, 2014 .

3 Laura Belli, Simone Cirani, Luca Davoli, Andrea Gorrieri,

Mirko Mancin, Marco Picone, and Gianluigi Ferrari, “Design

and Deployment of an IoT Application-Oriented Testbed,” IEEE

Computer, September 2015 .

4 Philipp Rosenkranz, Mattias Wählisch, Emmanuel Baccelli, and

Ludwig Ortman, “A Distributed Test System Architecture for

Open-source IoT Software,” IoT-Sys 2015, Florence, Italy: May 18,

2015 .

5 Jakob Engblom, “Continuous Integration for Embedded

Systems using Simulation,” Embedded World 2015 Congress,

Nürnberg, Germany: February 24, 2015 .

6 Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne,

and Thiemo Voigt, “Cross-level sensor network simulation with

COOJA,” Proceedings of the 31st IEEE Conference on Local

Computer Networks, 2006 .

7 Jakob Engblom, “Transporting Bugs with Checkpoints,”

Proceedings of the System, Software, SoC and Silicon Debug

Conference (S4D 2010), Southampton, UK: September 15–16,

2010 .

8 Stuart Douglas (ed), “Simics Unleashed—Applications of Virtual

Platforms,” Intel Technology Journal, Volume 17, September 2013 .

9 Jakob Engblom, David Kågedal, Andreas Moestedt, and Johan

Runeson, “Developing Embedded Networked Products using

the Simics Full-System Simulator,” Proceedings of the IEEE 16th

International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), Berlin, Germany: September 11–14,

2005 .

10 Ye Wen, Rich Wolski, and Gregory Moore, “DiSenS: Scalable

Distributed Sensor Network Simulation,” Proceedings of the

ACM Sigplan Symposium on Principles and Practice of Parallel

Programming (PPoPP), San Jose, CA: March 14–17, 2007 .

11 Grigory Rechistov . “Simics on the shared computing clus-

ters: the practical experience of integration and scalability,” Intel

Technology Journal, Volume 17, Issue 2, 2013 .

Wind River is a global leader in delivering software for the Internet of Things . The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support . Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems .

©2016 Wind River Systems, Inc . The Wind River logo is a trademark of Wind River Systems,Inc ., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc . Rev . 05/2016

