
By Arlen Baker, Principal Security Architect, Wind River

Security Implementations for
Embedded Systems

A Survey of Information

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

2 | White Paper

ABSTRACT

This paper examines the implementations of the well-known information security1 components

of confidentiality, integrity, and availability (the CIA triad2) as applied to embedded systems, and

how these implementations can be used to defend against various attacks.

The approaches taken by this paper are widely applicable to embedded systems in a

variety of markets, including aerospace,3 automotive,4 defense,5 industrial,6 medical,7,8 and

networking,9 and are directly applicable to the protection of the intellectual property (IP) of

the vendor.

The CIA Triad is authoritatively defined in:

United States Code, 2006 Edition, Supplement 5
Title 44 - Public Printing and Documents
Chapter 35 - Coordination of Federal Information Policy
Subchapter III - Information Security
Section 3542 - Definitions

TABLE OF CONTENTS

The CIA Triad . 3
Defense-in-Depth Approach . 3
Confidentiality for Embedded Systems . 3

	 Privacy Implementations . 3

	 Separation Implementations . 5

	 Key Management Implementations . 6
Integrity for Embedded Systems . 7

	 Data Integrity Implementations . 7

	 Boot Process Implementations . 8

	 Authentication/Authorization/Accounting (AAA) Implementations 9
Availability for Embedded Systems . 10

	 Whitelisting Implementations . 10

	 Intrusion Protection Implementations . 12

	 Embedded System Management Implementations. 13

	 Countermeasure Implementations. 13
Case Studies — How to Apply the CIA Triad. 14

	 Case Study: Aerospace Market . 15

	 Case Study: Medical Market . 15
References . 16

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

3 | White Paper

THE CIA TRIAD

The CIA triad is the foundational security principle for the protection

of an asset. Its three components can be thought of as similar to the

components of security for the contents of a home:

•	 Confidentiality is defined as maintaining the privacy of an asset.
Solid doors, walls, and window coverings provide privacy for the
contents of a residence.

•	 Integrity is defined as maintaining the content of the asset. An
alarm system, a fence, and locks on the doors and windows
maintain the integrity of a residence, such that the contents of
the residence are kept intact.

•	 Availability is defined as the accessibility of the asset. The con-
tents of the residence are available to the residents via pass-
codes to the alarm system and keys to the door locks.

The CIA triad can be further broken down into categories, which can

then be broken down into implementations, as shown in Figure 1.

The remainder of this paper will discuss these subprinciples and how

each can be used to secure an embedded system.

Application of the CIA triad begins with the security assessment.

The security assessment determines which CIA implementations

are required based on vulnerabilities, risks, regulatory require-

ments, and IP protection needs, and balances those needs against

cost, performance, and the operational environment. The security

assessment will provide the Security Policy, which defines the

security objectives for the embedded system: what the security-

related events are, how they are to be constrained, when they are

to be reported, and what actions to take in response to the events.

The security assessment also provides the processes within the

development cycle to assure that the security-related principles are

implemented.

DEFENSE-IN-DEPTH APPROACH

No single security principle by itself can provide complete protection

for an embedded system. Rather, it is the proper layering of these

defenses that will provide a much stronger, multifaceted protection

for the embedded system. The concept of layering these principles

together is known as defense in depth.10

Many factors dictate the security components that need to be

included to protect an embedded system; the security assessment

will uncover the required components.

CONFIDENTIALITY FOR EMBEDDED SYSTEMS

Confidentiality implementations are used to protect the privacy of

data in embedded systems. This protection includes data pass-

ing to/from the embedded system (data in motion), data that are

stored on the embedded system such as on disk drives and/or in

nonvolatile memory (data at rest), and data that are being pro-

cessed on the embedded system (data in process). Confidentiality

can be partitioned into three categories: privacy, separation, and

key management (as shown in Figure 2 along with their associated

implementations).

Privacy Implementations

Privacy is achieved through the use of cryptographic algorithms

on the data (encryption), making it nonsensical to an unauthorized

individual. An authorized individual can restore the data to its original

form (decryption). Just as there are different types of door locks,11

there are different types of cryptographic algorithms based on the

need. Types of cryptographic algorithms used for confidentiality

include the following:12

Security Assessment

Confidentiality

Development Processes

Trusted Platform

Privacy

Separation

Key
Management

Data Integrity

Boot Process

Authentication
Authorization,
& Accounting

Countermea -
sures

Whitelisting

Intrusion
Protection

Management

Integrity Availability

Security Policy

Confidentiality

Privacy

Data in Motion

Data at Rest

Sanitization

Separation

Partitioning

Covert
Channels

Key
Management

Key Generation

Key
Distribution

Figure 1. CIA triad principles

Figure 2. Confidentiality implementations

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

•	 Symmetric algorithms
	– Stream cipher: Processing data one datum at a time
	– Block cipher: Processing data one group (multiple data) at a

time
•	 Asymmetric (also known as public key) algorithms

The strength of the privacy provided is based on the combination of

the cryptographic algorithm and the length of the associated key.13

Industryapproved cryptographic algorithms and key lengths are

provided in Barker, “Transitions: Recommendation for Transitioning

the Use of Cryptographic Algorithms and Key Lengths.”14

The length of time in which a cryptographic key should be used is

called a cryptoperiod. Cryptoperiods vary based on the algorithm, key

length, usage environment, and volume of data that is being protected.

Guidance for cryptoperiods can be found in Barker, “Recommedation

for Key Management — Part1: General (Revision 4).”15

Symmetric cryptographic algorithms use the same key for both the

encryption and decryption processing. This would be similar to a

door lock that is keyed on both sides of the door for the same key:

lock the door from the inside (encryption); unlock the door from

the outside (decryption). An example of a symmetric algorithm

is the Advanced Encryption Standard (AES).16 AES is an industry-

approved symmetric algorithm17 for providing confidentiality of

sensitive data. Figure 3 shows a typical symmetric cryptographic

workflow. In the embedded arena, sharing a cryptographic key

can be challenging because of the large number of end points

involved. This challenge will be addressed in the “Key Management

Implementations” section of this paper.

Asymmetric cryptographic algorithms are also called public key

algorithms. This type of algorithm requires two keys (a key pair):

one that is kept private and one that can be made public. The pri-

vate key is kept tightly protected and is accessible by as few indi-

viduals as possible. The public key can be accessible by others,

but does require a level of protection in an embedded environment,

as its corruption could cause a denial-of-service (DoS) attack. The

asymmetric algorithm provides for encryption to be completed by

the public key and the decryption completed by the private key.

Figure 4 presents an asymmetric cryptographic workflow.

A downside of asymmetric cryptography is that it requires more

processing power and longer-length keys to achieve a level of

security comparable to symmetric cryptography. For this reason,

asymmetric cryptography is typically used for the generation and

verification of digital signatures. This use will be discussed in the

“Integrity for Embedded Systems” section of this paper.

Protecting the confidentiality of data in an embedded system-

can be a regulatory requirement, a method to protect IP, or an

industry-recommended requirement (for example, in aerospace,18

automotive,19 defense,20 industrial,21 medical,22 and networking23).

Data in an embedded system can be in one of three states: in

motion, at rest, or in process. Data in motion is data passing to/

from the embedded system; data in process is data generated or

consumed within an embedded system; and data at rest is data

stored on the embedded system.

Data in an embedded system can be in one of three states: in

motion, at rest, or in process. Data in motion is data passing to/

from the embedded system; data in process is data generated or

consumed within an embedded system; and data at rest is data

stored on the embedded system.

Data-in-Motion Privacy

The data being passed over the network can be more than just the

data being generated or consumed by an embedded system. The

management data to and from the embedded system is just as

critical. Updates and patches, telemetry, and logging informa-tion

can be of significant value to an attacker, so protection of this data

is paramount to securing the embedded system. An attacker will

monitor the behavior of the embedded system when stimuli are

applied during attacks; by observing the response from the system,

the attacker can plan the next step in the attack process.

4 | White Paper

Embedded System #2Embedded System #1

Wind RiverEncryption
(AES-128) (AES-

Shared Key

Plain Text Plain TextCipher Text

Wind River Decryption
(AES-128)

BhT*%Fq.1hp)@\gd

0123456789abcdef0123456789abcdef

Embedded System #1Embedded System #2-n

Wind RiverEncryption (AES-

Plain Text Plain TextCipher Text

kdKSp8*_9(&\||akd^2Wind River Decryption

Public Key

Private Key

Figure 3. Symmetric cryptographic workflow

Figure 4. Asymmetric cryptographic workflow

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Many implementations for protecting the confidentiality of data

in motion are available. These implementations can operate at

different levels of the network stack — for example, Internet Protocol

Security (IPsec),24 Transport Layer Security (TLS),25 and HyperText

Transfer Protocol (HTTP) over TLS (HTTPS)26 — and these just

scratch the surface, as shown in Figure 5. Recommendations

for securing data in motion are provided in McKay and Cooper,

“Guidelines for the Selection, Configuration, and Use of Transport

Layer Security (TLS) Implementations,”27 using the TLS protocol.

Data-at-Rest Privacy

Protection of data stored on an embedded system, whether on a

disk drive, a USB stick, or in nonvolatile RAM, can include the data

produced or consumed by the embedded system, patches or other

updates, telemetry data, IP, and logging information. These data

can be very valuable to attackers if stolen, and if corrupted, can

also disrupt the operation of the embedded system, causing a DoS

attack.29

Protection of data at rest is typically implemented by the use of

symmetric cryptography. Symmetric cryptographic algorithms

such as AES are ideally suited for protecting data at rest, as they are

fast and can accomplish strong levels of protection using shorter

key lengths than asymmetric cryptography. The symmetric key,

however, must be tightly protected on the device to maintain the

privacy of the data. Secure storage of the symmetric key is best

accomplished using hardware assistance such as the Trusted

Platform Module30 or the Secure Key Management Module of an

NXP (formerly Freescale) QorIQ processor.31 If hardware assistance

is not available for key storage, a software implementation can then

be used that utilizes obfuscation to achieve its protection.

The usage environment of the embedded system may have an

impact on the generation of the key. For example, if the data need

to be recovered and the embedded system becomes inoperable,

the ability to have a duplicate key is then required. Conversely, if

the data are isolated to the embedded system and do not need

to be recovered, the key can be randomly generated and stored

solely on the embedded system in a hardware-assisted, protected

mechanism.

Sanitization

When critical data are no longer needed on the embedded system,

they should be sanitized to prevent loss of privacy. To minimize the

potential attack surface, the data’s memory locations should be

overwritten, including the stack. The simplest method of keeping

the stack sanitized is to initialize all local variables within a function

when the variables are defined. As the functions are executed, the

stack is auto-sanitized as a result.

Because the use of cryptographic algorithms inherently requires

the generation and use of a cryptographic key, the means to destroy

or erase this key and associated data is required. By encrypting all

data at rest on the embedded system, sanitization can be completed

by the destruction of the cryptographic key(s) used to protect that

data. Once the key is destroyed, the data cannot be restored and

will remain nonsensical. This approach is called cryptographic

erase.32 Destruction of the cryptographic key(s) is based on the

hardware device, if hardware is used. If not, a series of overwrites

of alternating data patterns over the key storage area can be used.

Separation Implementations

The architecture of the embedded system provides a level of con-

fidentiality by keeping independent functions isolated from each

other. For example, the function that provides connectivity to the

Internet can be kept separate from the function that accesses the

sensors the embedded system is managing, with strict information

flows between the two. This constrains an attack on the Internet

connectivity function from impacting the sensor management

function.

Partitioning (Data in Process)

Isolating processes on the system provides a level of confidentiality

by assuring that each process cannot access or interfere with other

processes. A typical implementation of separation uses a Type 1

hypervisor that resides directly above the processor. The hypervisor

5 | White Paper

SSH, S/MIME, PGP, X.509, IKE, ISAKMP

SOCKS (circuit level gateway)

SSL, TLS, Stunnel

IPsec

CHAP, PPTP, L2F, WEP, WPA2. ECP, EAP

Application

Presentation

Session

Transport

Network

Data Link

Physical

CHAP: Challenge Authentification Protocol
PPTP: Point to Point Tunneling Protocol
L2F: Layer 2 Framing Protocol
L2TP: Layer 2 Tunneling Protocol
WEP: Wired Equilvalent Privacy
ECP: Encryption Control Protocol
EAP: Extensible Authentification Protocol
WPA2: Wireless Protected Access

IPsec: IP Securiy
SSL: Secure Socket Layer
TLS: Transport Layer Security
Stunnel: Secure Tunnel
SSH: Secure Shell
S/MIME: Secure MIME
PGP: Pretty Good Privacy
ISAKMP: Intermet Sec. Assoc. and Key Mgt. Prot.

IKE: Internet Exchange

VPN Protocols

Link Layer Security

Figure 5. Security protocols and network layers28

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

defines partitions by assigning resources (memory, devices, cores,

etc.) to each partition, and executes the process(es) within each

partition. The processes can execute within the defined partition

and maintain the privacy of its data from other processes on the

processor.

Communication channels between the partitions can be provided

by the hypervisor to include shared memory regions or an inter-

partition communication mechanism. These communication chan-

nels can be restricted in terms of direction of flow, access rights,

and whether or not the hypervisor itself is involved in the com-

munication flow.

The assignment of resources and definition of the communication

channels is defined in the hypervisor’s Security Policy. The Security

Policy creates the time and space allocation for each partition along

with the channels of communication, if any. This communication

policy can be as high level as “yes” or “no,” or granular enough to

constrain the size of the message, the data rate, and the direction

of the communication path.

Covert Channels

Care must be taken in the implementation and usage of communi-

cation channels. An unintended path of communication could be

created, exposing critical data to an attacker. These unintended

communication paths are called covert channels and come in

two forms: covert storage channels and covert timing channels. A

covert storage channel is created when data are passed against

the intent of the Security Policy. An example of this is using the IP

packet header to transmit data.33 A covert timing channel is cre-

ated when the occurrence of an event over a period of time passes

information.34

Covert channels can exist in all types of computing environments,

from within a partitioned system to a typical embedded system.35

When strong security is required, an analysis should be performed

to identify and remove or mitigate channels that could be used by

an attacker.

Key Management Implementations

Coordinating the creation, use, delivery, and updating of crypto-

graphic keys is called key management. The complexity of key

management is based on the number of keys, the number of sys-

tems that require those keys, and the cryptoperiod of each key.

In the simplest but least secure form of key management, all

embedded systems use the same key for an infinite amount of

time (i.e., non-expiring cryptoperiod). This configuration provides

for a level of privacy by using cryptography (with the assumption

it is correctly applied), but has the risk of exposing all embedded

systems to attack if the key is ever compromised. In contrast, a

configuration where each embedded system has its own unique key

for a short, random cryptoperiod leads to much stronger security.

The complexity of ensuring that the many systems in a typical

embedded environment have the correct cryptographic keys and

maintain their recommended cryptoperiods demands a central key

management system that implements the framework specified in

Barker, Smid, Branstad, and Chokhani, “A Framework for Designing

Cryptographic Key Management Systems.”36

Key Generation

Random numbers are a cornerstone to the effectiveness of cryp-

tography. Pseudo-random numbers (PRN) are a starting point, but

they do not provide the strength of a true (entropic) random number

(TRN) generator. The issue with PRNs is that they are deterministic

by definition, as they are generated by a mathematical equation.

Determinism in cryptographic key generation is counterproductive

because if the starting point of the PRN (the “seed”) is found, the

cryptographic key can be determined in a much shorter timeframe.

Because of the shortcomings of a PRN, a hardware-based random

number generator that provides true entropy can be used for the

generation of strong cryptographic keys. Modern Intel® proces-

sors have specific instructions37 available and the NXP processors

have a hardware-based random number generator available in their

SEC module.38 With this hardware support, a platform is available

such that cryptographic keys can always be created using a TRN

generator.39 If hardware support is not available, there are software-

based alternatives that can be used to ensure a quality source of

entropy.

Key Distribution

Extreme care is required when distributing cryptographic keys to

embedded systems. Verification of the destination embedded

system must be absolute to ensure the keying material does not

mistakenly fall into an attacker’s hands. The keying material must

be kept confidential, from the source to the destination embedded

system and within the embedded system, until it is needed. The

embedded system must have absolute verification of the source

of the key distribution to ensure an attack is not being launched

against it. By using an attacker’s keying material, the embedded

system unknowingly loses the confidentiality of its data in motion.

6 | White Paper

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

INTEGRITY FOR EMBEDDED SYSTEMS

Integrity implementations are used to ensure that the data of

the embedded system have not been modified or deleted by an

attacker. These data include the data being generated or con-

sumed by the embedded system, along with its programming data

(operating system, applications, configuration data, etc.). As with

confidentiality, integrity applies to the three states in which data

exist: in motion, at rest, and in process.

Integrity of data is typically verified by a mathematical algorithm

called a hash. There are many implementations of hash functions,

but the one selected must minimize, if not completely remove, the

risk of a collision where more than one input can generate the same

output (the message digest). These types of hashes are called

Secure Hash Algorithms (SHA).40 By minimizing the chance that the

changed data hashes to the same value as the original data, this

removal of collision risk increases the probability of a change to the

data being verified. As shown in Figure 6, the categories of integrity

for an embedded system are: data integrity, boot process, and AAA.

Data Integrity Implementations

The data within an embedded system can include the operating

system, the applications, and the configuration data. If any of

these data are corrupted, the embedded system will not perform

its intended function, or the embedded system can become an

instrument for the attacker to use on the fabric of the embedded

system itself (also known as a Bot). Disruption of the integrity of the

data on the embedded system is like disruption of the foundation

of a residence: the components above it are weakened and cannot

be trusted.

Data-in-Motion Integrity

Many embedded systems have the requirement of passing data to/

from the device. The data must be protected against modification,

either intentional (through an attack) or unintentional (through a

programming error), while being transmitted from source to des-

tination. A hash can be used, but the attacker can circumvent this

measure by simply recalculating a new message digest after the

modification has been made. A stronger integrity mechanism is

a keyed-hash message authentication code (HMAC). The HMAC

provides a data integrity check with a shared private key, as shown

in Figure 7. Because the HMAC requires a key, it must be protected

just like a cryptographic key.

Data-at-Rest Integrity

The integrity of critical data on the embedded system must

be verified before they can be relied upon for processing. The

verification of the programming data will be covered in the “Secure

Boot” section of this paper. Verification of the configuration and

site-specific data should be completed prior to operating on that

data to ensure no modifications to these data have been made by

an attacker. Using an HMAC, the message digest of the data can

be calculated (periodically and before shutdown) and verified (at

startup and periodically).

Data-in-Process Integrity

As data are being generated or consumed on the embedded sys-

tem, integrity checks can be used to ensure that the processing

flow can be trusted and that the correct data are being processed.

Unique enumeration values throughout the software and for all

data types can be used to verify the processing flow integrity. This

approach ensures that each application programming interface

(API) is called with the parameters that are unique to only that API,

and thus maintains the integrity of the processing flow.

7 | White Paper

Integrity

Data Integrity

Data in Motion

Data at Rest

Data in Process

Boot Process

Secure Boot

Trusted Boot

Remote
Attestation

AAA

Authentication

Authorization

Accounting

Embedded System #2Embedded System #1

Message
Data

Secure Hash
Function

Secure Hash
Function

Message
Data

HMAC

Message
Data

Generates Verifies

Figure 6. Integrity implementations

Figure 7. HMAC workflow

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Boot Process Implementations

Starting the embedded system with known, authenticated soft-

ware is foundational to securing the embedded system. Without

a boot process that proves the embedded system is starting with

unmodified software and data, the system cannot be trusted. The

verification must include boot code, application code, and critical

data that are stored on the system (data at rest).

The boot process is partitioned into two parts, as shown in Figure

8. The Secure Boot phase is controlled by the trusted hardware plat-

form, and the Trusted Boot phase is controlled by the previously

verified software.

Secure Boot

Secure Boot starts with the platform and the pedigree of that

platform. A Trusted Platform is hardware that has been purchased

through approved channels of distribution by the technology sup-

plier.41 Upon receipt of the platform, it must be validated that the

correct item was received, its delivery path is sensible, its delivery

time is justified, and its tamper-resistant packaging is intact. Only

then can the platform become a Trusted Platform.

One of the security features that the Trusted Platform must pro-

vide for is a mechanism to verify the boot software of the embed-

ded system. This mechanism enables an unchangeable (due to

its implementation in hardware) process to verify the first piece

of software in the boot process. The verification process is best

implemented using digital signatures.

Digital signatures combine the use of a hash function’s message

digest along with the asymmetric private-key encryption of that

hash function by the author. The Trusted Platform verifies that digi-

tal signature by recalculating the message digest, decrypting the

associated digital signature with the public key, and comparing the

message digests. If the message digests match, then the integrity

of the software is verified. This workflow is shown in Figure 9, and

differs from what is shown in Figure 4, as that workflow was for

confidentiality and this workflow is for integrity.

Trusted Boot

Trusted Boot is the progression of a boot process where individual

images and data are verified by previously verified software. It is

best if this process includes hardware assist to perform the verifi-

cation processing, because the immutable properties of hardware

(whether system-on-chip [SoC] or field programmable gate array

[FPGA]) mitigates the risk of a malicious change causing a breach

in verified boot processing. The process of one verified image

passing control to another verified image is called a chain of trust

(see Figure 10). The chain-of-trust approach ensures that only veri-

fied software is loaded into the system.

Remote Attestation

Remote attestation42 is the process of taking “measurements”

during the Secure Boot and Trusted Boot phases of the boot

sequence and reporting these measurements to a physically sepa-

rate server, as shown in Figure 11. These measurements are typi-

cally a hash of the components of the boot process (bootloader,

applications, etc.). The server than compares these measurements

and determines the trustworthiness of the embedded system. The

transmission of the measurements is secured and must include the

identity of the embedded system. This identity is most secure if it

is a hardware-bound identity, such as found in a Trusted Platform

Module (TPM). The baseline measurements must be made in a

trusted environment and by trusted individual(s).

8 | White Paper

Execution Flow

Hardware-
Controlled
Verification

Software-Driven + Hardware-Assisted Verification

Secure Boot Trusted Boot

Trusted Platform

Execution Flow

Hardware-Controlled
Verification

Software-Driven + Hardware-Assisted Verification

Secure Boot

Image #1
(signed/encrypted)

Image #2
(signed/encrypted)

Image #3
(signed/encrypted)

Trusted Boot

Bootloader
(signed)

Embedded SystemAuthor

Image

SHA

Private Key

Public Key

Message
Digest

Encrypt

Digital
Signature

Image

SHA

Message
Digest

Digital
Signature

Decrypt

Message
Digest

If the message digests are the same,
the digital signature over the image is valid
and states that the image has not been
modified.

Figure 8. Boot process

Figure 10. Chain of trust

Figure 9. Digital signature workflow

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Remote attestation is best for an embedded system that is “always

on” a network connection (rather than one that has limited network

connectivity) so that a mismatch in the measurements can be

quickly identified, and the response defined in the Security Policy

can be enacted.

Authentication/Authorization/ Accounting (AAA)
Implementations

Security risks increase as the level of exposure of an embedded

system to the Internet increases. Couple exposure to the Internet

with a network configuration that is dynamic, and the embedded

system requires a layering of defenses to maintain the integrity

of its knowledge of the other devices it communicates with. This

layering of integrity defenses is called authentication, authoriza-

tion, and accounting (AAA, pronounced “triple A”). AAA provides a

level of integrity for the embedded system in determining which

other devices on its network it is allowed to communicate with and

the type(s) of data that should be passed.

Due to the nature and complexity of these defenses, a centralized

server and toolset are required to properly manage the application

of these defenses in an embedded systems environment and to

analyze and respond to any received security events.

Authentication

Authentication tries to answer the question: “Are you who you say

you are?” in order to establish trust in the identity of the distant

device the embedded system is attempting to communicate with

over the network. To implement authentication, a trusted third party

is required. This trusted third party mediates between the embedded

system and the distant device (so both devices must be known to

the trusted third party) and contains information about all devices

on the network. A well-established protocol called Kerberos43 exists

to establish this trust between devices over the network. Using the

Kerberos-identified messages along with clarifying annotations,

Figure 12 shows the message flow for the embedded system to

establish its identity so it can communicate with the distant device

over the network.

Authentication can also occur within the embedded system with

its applications and operating system. In this case, the trusted

third party consists of both the operating system and the Security

Policy, which will have a set of identifying attributes unique to each

application (whether a task, process, or partition). The operating

system will have access to these immutable identifying attributes

at runtime. When the application makes a service request to the

operating system, the request includes these identifying attributes

(without the awareness of the application). The operating system

then has assurance of the source of the request prior to providing

the service.

Authorization

After authentication, authorization typically follows, because the

embedded system must be known before it is allowed to access

other network resources. Authorization is the determination of the

type of access allowed to a resource within the network. A network-

wide Security Policy defines what the resources are, the paths of

communication to and from each resource, and to what level the

access can occur (read versus read/write).

9 | White Paper

Embedded System

Secure Boot Trusted Boot

Measurements

Attestation Server

Measurements + Identity
Trustworthy

?
Baseline

Measurements

Trusted Platform

App 1) App ID
2) Service request

1)OS verifies that the
App ID is defined in
the Security Policy Security

PolicyOperating System

Distant DeviceEmbedded System Trusted Third
Party

Authentication Service Request

Authentication Service Response

Ticket Granting Service Request

Ticket Granting Service Response

Authentication Protocol Request

Authentication Protocol Response

I am "Embedded System."

Here is an encrypted
packet. Show me
you can decrypt it.

Here is the decrypted
packet. Now do you
believe me?

Yes.
Here is the key to encrypt
the next message for the
“Distant Device.”

“They” said we can talk.
Here are my credentials.

Those credentials check
out. Let’s talk….

Figure 11. Remote attestation workflow

Figure 13. Authentication provided by a robust operating system

Figure 12. Annotated Kerberos message flow

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Just as with authentication, authorization can occur within the

embedded system as well. The Security Policy being enforced by

the robust operating system is used to make the determination

about whether the application is allowed to request the service.

This is the second step shown in Figure 14.

Accounting

Accounting is the generation of a log of events that denote security-

related activities on and by the embedded system. This logging of

events can occur within the embedded system or to an external

server. The events to log and the response to those events are

defined by the Security Policy.

Because impenetrable defenses are not possible, the ability to

determine what led to an attack and what happened during the

attack are critical in the feedback loop for improving the security

of the embedded system. Security-related event logs must be col-

lected and analyzed to ensure the following:

1.	 The integrity of the embedded system can be monitored

2.	 An attack determination can be made

3.	 A response to the attack is made

It is best that these occur as near to real time as possible to

minimize the damage from the attack. The Security Policy on the

embedded system defines what the security-related events are and

the initial, front-line response to that event.

Because of the large number of embedded systems that must be

monitored, along with the large number of events that need to be

parsed and managed, a specialized server is required. This type

of server is called a security information and event management

(SIEM) server. A SIEM server is able to correlate received security

event messages from embedded systems and use predictive ana-

lytics to determine if an embedded system is at risk of an attack.

A SIEM server can also take as an input a continuous threat intel-

ligence feed to aid in its analysis of the security events. This intel-

ligence feed provides a larger view of the type of attacks that the

embedded system may face.

A SIEM server is a powerful tool but also a very complex tool. The

introduction of a SIEM server into an infrastructure must be care-

fully planned, and to be successful its capabilities must be allowed

to evolve over time, as the administrators become more accus-

tomed to what it can provide.

A notional configuration of using a SIEM server is shown in Figure 15.

AVAILABILITY FOR EMBEDDED SYSTEMS

Availability implementations are used to ensure that an embedded

system performs its intended function. The simplest and purest

approach to ensuring availability for an embedded system is never to

allow any changes to occur on the embedded system. Of course, this

is unrealistic, because attacks over the Internet constantly evolve in

sophistication, and the functionality of the embedded system itself

evolves over time. Because of these competing goals (availability vs.

enhancements), a series of implementations is required to reduce

the risk of diminishing the availability of the embedded system. As

shown in Figure 16, the categories of availability for an embedded

system are: whitelisting, intrusion protection, management, and

countermeasures.

Whitelisting Implementations

Whitelisting simply defines what is allowed. Anything that is not on

the whitelist is denied. Whitelisting for an embedded system can be

applied at the network level (what devices the embedded system

can communicate with) and within the embedded system (what

applications can be executed within the embedded system). The

focus in this section will be within the embedded system, on what

can be layered to maintain the availability of the embedded system.

10 | White Paper

Trusted Platform

App 1) App ID
2) Service request

1)1) OS verifies that the App ID is
defined in the Security Policy
2) OS verifies that the
authenticated requester can
request the service

Security
PolicyOperating System

SIEM

Embedded
System

Internet

Embedded
System

Embedded
System

Constant Global
Threat Intelligence Feed

Figure 14. Authorization of a request provided by a robust operating system

Figure 15. Notional SIEM server usage

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Access Control

Defining which user or application can execute a specific service

provided by the embedded system provides a level of defense

against an attack. To correctly determine which user or applica-

tion is associated with an exploitable service of the embedded

system, the attacker would need an almost a priori knowledge of

the embedded system (and why the accounting implementation is

required to detect this “guessing”). This user/application-to-service

control is called access control. Access control is the policy that

defines what a user or application can perform with a service

the embedded system is providing. There are four different types

of access controls as listed in Table 1, which also describes the

management overhead of implementing the access control and

the strength of access it provides (assuming the access control is

non-bypassable).

11 | White Paper

Availability
Implementations

Whitelisting

Access Control

File Integrity

Intrusion
Protection

Malicious
Software
Prevention

Firewall

Management

Device
Management

Security
Policy

Countermeasures

Hardware Anti-
tamper Support

Patch
Management

Attestation

Figure 16. Availability implementations

Table 1. Access Control Types

Access Control Type Definition Example Overhead Strength

Mandatory access
control (MAC)

Each service is labeled and
each user/application is
labeled. Access is allowed
only if the labels match.

“Only the maintenance application
can access the reboot service of
the embedded system.”

Very high

The labeling between the users/appli-
cations and services must be defined
and maintained.

Strongest

Clearly defines what user/ applica-
tion can access what service.

Role-based access
control (RBAC)

The access controls are spe-
cific to the role that the user/
application is providing.

“Only the network administrator
application can update the AAA
configuration.”

Medium

Once roles and services are defined, it
becomes more of a maintenance task
to keep them updated.

Medium-to-high

Based on the granularity of the
roles defined.

Discretionary access
control (DAC)

The access controls are
specific to the user/applica-
tion and defined by the user/
application.

“The file created by the Sensor
Application can be read, but not
written, by the Network Application.”

Very Low

It is up to the application to define the
access control.

Weakest

Pushes determination to the
application.

Rule-based access
control (RBAC)

The access controls are
based on a set of rules which
are more than just the user/
application.

“Access to maintenance data is
limited to 2300-2359 each night and
only when the embedded system is
at a maintenance facility.”

Medium-to-High

Depends upon how fluid the rules are
and if there are exception cases.

Medium

Depends on the stringency of the
rules.

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

File Integrity

Maintaining the integrity of the data files that are generated or

consumed on the embedded system aid its availability by not

allowing any corrupt or malicious data onto the device and not

allowing a polluted file to pass through the embedded system.

Depending on the environment in which the embedded system

operates, how the embedded system is implemented, and the

regulations with which the embedded system must be compliant,

the integrity of the files and the list of files on the device must

be closely monitored. Otherwise, the embedded system can be

attacked and lose its availability.

Steganography is a form of covert channel where data are hidden

in an unused portion of a file and are only evident by the antagonist

and the intended recipient. These hidden data can include any type

of confidential or protected data, or even malware.

Borrowing from the integrity principle, a “seal” can be applied on

the files as close to the source as possible, and as soon as the

file is created, to provide the highest level of assurance that it has

not been tampered with. It is best if the integrity seal is a digital

signature, where the source has the closely guarded private key

and the embedded system has the public key. The integrity seal is

then verified by the embedded system as part of the boot process

and before each access (i.e., read, execute, and pass-through [as

needed]).

Intrusion Protection Implementations

Intrusion detection systems (IDS) and intrusion prevention

systems (IPS) are common systems in the topology of a modern

network. The terms can be confusing and overloaded, but Google

searches yield the following definitions:

•	 Detect: To discover or identify the presence or existence of
•	 Prevent: To keep (something) from happening or arising
•	 Protect: To keep safe from harm or injury

So protection of the embedded system against malicious software

will be defined as:

protection :== detection + prevention

Intrusion protection is specific to an embedded system, depending

on both its environment and its functionality. Intrusion protection

provides a layer of defense within the embedded system to detect

the presence of, and prevent damage from, malicious software

executing within the embedded system’s memory space. Intrusion

can occur through the network or through a separate device

connected to the embedded system, such as a USB device.

Malicious Software Prevention

Preventing foreign software from executing within the embedded

system requires a static inventory of what should be on the embed-

ded system, along with a known list of APIs that each application

within the embedded system can access. This inventory includes

the memory, the file system (if applicable), and the critical system

APIs that are allowed to be called by each application.

The inventory of the file system and memory is protected, veri-

fied at startup, and periodically verified as the embedded system

executes. The inventory needs to be defined in such a way that a

straightforward verification process can occur (to minimize perfor-

mance impacts). It is best if the unused memory within the system

can be periodically verified to ensure no malicious software has

infiltrated the embedded system.

Applications should never be given complete access to all APIs

available by the operating system. Rather, an enforced subset

of the APIs that the application absolutely requires to fulfill its

requirements should be allocated. This is the principle of least

privilege, which states that an entity should be restricted in access

to only those resources required to fulfill its function, and no more.

For example, an application that monitors a sensor does not require

access to APIs that control the execution model of the system. For

better security, the enforcement of the APIs should be implemented

by the OS against a statically defined configuration determined at

build time.

As shown in Figure 18, protection against malicious software

requires both the ability to detect and a mechanism to prevent an

attack from the malicious software.

12 | White Paper

Embedded SystemAuthor

File
Created

Private Key

Public KeyDigital
Signature

File
Accessed

Digital
Signature

Immediately

Figure 17. File integrity workflow

Operating System

Memory

Allocated
MemoryMemory Map

File System
File System
Inventory

API Policy

Application 1

Application 2

Application n

Unallocated
Memory

Detection

Prevention

Figure 18. Malicious software protection

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Firewall

A firewall is defined as a system that monitors and controls the

incoming and outgoing network traffic based on predetermined

security rules.44 For an embedded system, it is best if the firewall

rules are partitioned into different layers to simplify the manage-

ment of the rules, and more importantly, to distribute the rules

across multiple applications and files to decrease the amount of

damage that can be done by an attack. This layering of rules is

shown in Figure 19, which shows how different applications modify

the different firewall rules.

It is important that a firewall be able to determine anomalous

behavior for communications ports. Each port into and out of the

embedded system should be characterized to determine its data

rate (either sustained or burst). The firewall should then contain

rules to monitor the rate of data going through each port. This

characterization can then be used to help in detecting an intrusion

into the embedded system.

Embedded System Management Implementations

Since the embedded system connects to the Internet, it must oper-

ate in a dynamic and ever-growing cyberattack45 environment. A

set-and-forget approach will protect the embedded system for only

a short period of time. Rather, active management of the device is

required to maintain its availability to perform its function. As with

AAA, a centralized server and toolset are required to provide the

level of management of a large number of embedded systems.

Device Management

Communication between the embedded system and its centralized

server must be the most protected and most layered communica-

tion within the device. Because of the administrative commands

that drive the embedded system, this communication path is the

most sought-after by an attacker. Faux-commands at random inter-

vals should be considered for several reasons. It will be difficult for

the attacker to understand a pattern of communication, to deter-

mine if it is “real” or not, and to determine if it is due to a stimulus

applied to the embedded system. These faux-commands should

vary in size from a typical “real” command to a patch update and

everything in between.

The embedded system requires different levels of management

to maintain its availability. Overhead-type activities such as

provisioning, commissioning, and general remote administration

are typically required.

The next level of management involves the authentication and

authorization described in the AAA section of this paper. It is man-

datory that the embedded system is not allowed to communicate

with any device outside of its whitelist of approved devices, and that

accounting entries are received when the communication is occurring.

The highest level of management is that of security-related man-

agement. This includes off-loading security event logs, critical

security events, and security-related patch updates.

Security Policy

The Security Policy describes what the embedded system needs

to protect, how to protect it, and the events related to that protec-

tion. The Security Policy covers the implementations covered in

this paper. Examples of items covered by the Security Policy are

listed in Table 2. Protection of the Security Policy on the embedded

system demands, at minimum, an integrity check to ensure it has

not been corrupted. The embedded system will need to have a pre-

programmed response to a corrupt Security Policy (destruction of

nonvolatile files, shutdown, etc.).

Countermeasure Implementations

Availability can be larger than the single embedded system, but can

include a much larger group of embedded systems. The compromise

of one embedded system can lead to a compromise of all embedded

systems. Because of this, specific defenses are required to minimize

an attack on the larger group of embedded systems.

Hardware Anti-tamper Support

If an attacker has physical access to the embedded system, inter-

nal components of the device become a priority for the attacker,

up to and including attaching an external device to the embedded

system (e.g., a JTAG device). In general, embedded systems should

13 | White Paper

Administration
Application

Network Management
Application

Operational
Application

Admin Server(s)

Network
Management

Other
Embedded Systems

Rules to allow communication
to management server(s)

Rules to block attacks (e.g., scans,
floods, malformed packets, etc.)

Rules to allow communication
to other embedded eystems
Rules for data rate monitoring

Figure 19. Firewall rule layering (conceptual)

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

be encased and only necessary ports exposed. But if an attacker

opens the case of the embedded system and has access to its

components, great damage can occur not only to the device, but to

the network that the embedded system resides on and the devices

that it communicates with. A defensive layer against physical

access to the embedded system can be implemented using anti-

tamper46 means provided by the Trusted Platform.

The embedded system’s Security Policy defines what is to be pro-

tected from a physical attack, but considerations should include

encrypting applications and configuration data so that the cryp-

tographic key(s) is erased when a physical tamper event occurs

(the sanitization implementation). This approach is outside the

function of software and is completely implemented by the Trusted

Platform. When the system attempts to boot, the software will not

be able to be decrypted correctly, rendering its contents unusable

by the attacker. The same applies for the configuration data (and

other data) on the embedded system. Without the cryptographic

key, the data on the file system is unreadable by the attacker.

Although the attacked embedded system is no longer available,

the remaining embedded systems and network continue to remain

available.

Patch Management

A centralized server with a specialized toolset is required to man-

age the different patches on each embedded system. Because

the embedded systems can reside in a large range of operational

environments, some devices may require patches that other

devices do not. These operational environments may also dictate

a specific Security Policy that defines responses to certain attacks.

Attestation

Portions of the embedded systems application are typically static

during its operation. The application itself, its operating system,

and its configuration data are typically static. These regions of the

embedded system can be verified during execution with assistance

from the Trusted Platform. Following the boot process, an integrity

calculation can be made over these regions, and then subsequent

integrity calculations can be made and verified against the boot-

time integrity calculation by the Trusted Platform until the following

power cycle. If there is a mismatch with the boot-time integrity

calculation, the Security Policy will state what the response should

be, including a system restart to cause the embedded system to go

through its boot device.

A change in the static region of the embedded system could

indicate a programming error, or that an attack is occurring and

attempting to disrupt the operation of the device. Using the Trusted

Platform, the performance impacts of this implementation can be

significantly minimized.

CASE STUDIES — HOW TO APPLY THE CIA TRIAD

This section provides a notional representation of how to map

a security specification to the implementations of the CIA

triad defined in this paper. A security assessment is required

to fully capture all requirements for a compliant solution (thus

no warranty or claims are made on the solutions presented

here), but this sec-tion illustrates how the implementations of

the CIA triad are used to define a Wind River®–based solution.

14 | White Paper

Triad Implementation Security Policy Examples

Confidentiality Privacy Algorithm(s) to use for each path of communication and each data stored

The partitions in the system; information flow between those partitions; the devices accessible by the parti-
tions; the OS APIs allowed to be calledSeparation

The list of crypto keys and their cryptoperiod; how each key is protected and its destruction mechanismKey management

Integrity Data integrity Which integrity mechanisms to use on which data if applicable: the HMAC key and its cryptoperiod

What needs to be verified; what if a verification step fails (degraded mode)

Boot process What communication needs to be authenticated; what is authorized to be accessed on the device; security
events that are to be logged locally and sent remotelyAAA

Availability Whitelisting What access control method is used; list of resources on the device that require controlled access

Intrusion protection APIs allowed to be executed by the applications; the file system inventory

Management Management server information; communication path implementation; rate and type of faux-commands

Countermeasures Response to tamper events and attestation violations

Table 2. Security Policy Examples

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Case Study: Aerospace Market

This case study shows a mapping of the recommendations

from DO-355 “Information Security Guidance for Continuing

Airworthiness.” Note that this document has three separate sec-

tions for the Airborne Platform (sections 2 and 3), the Access

Points (section 4), and the Ground Station Equipment (sections 5, 6,

and 7). Table 3, Table 4, and Table 5 provide the mapping of DO-355

to the CIA triad implementations.

Using this mapping and comparing it to the Wind River offerings

for confidentiality, integrity, and availability, a notional multi-OS

solution can be constructed as shown in Figure 20 as a representa-

tive example to fulfill these requirements.

Case Study: Medical Market

This case study shows a mapping of the Security Capabilities Sec-

tion of the Manufacturer Disclosure Statement for Medical Device

Security47 to the components of the CIA triad shown in Table 6,

Table 7, and Table 8. Note that n-x denotes that all categories within

section “n” map to that implementation.

Using this mapping and comparing it to the Wind River offerings

for confidentiality, integrity, and availability, a notional Linux-

based48 solution can be constructed as shown in Figure 21 as a

representative example to fulfill these requirements.

15 | White Paper

Table 3. Aerospace Case Study — Confidentiality Mapping

Table 4. Aerospace Case Study — Integrity Mapping

Table 5. Aerospace Case Study — Availability Mapping

2.1
2.2.8
6.2.1

2.2.8
3.2.5
5.2.1
6.2.6
8.2.5

2.1 2.2.3
7.1
7.1

2.2.3
7.1
7.1

Confidentiality

Privacy Key ManagementSeparation

Data in
MotionPartitioning Convert

Channels Sanitization Data at Rest
Key
Distribution

Key
Generation

5.2.1
6.2.4

5.2.1
6.2.4
7.1

4.2
6.2.7
8.1

2.1
2.2.1
2.2.4
2.2.6
6.2.1

2.1
2.2.4
2.2.7

2.2.1
4.1
4.2
7.1

4.1

Integrity

Data Integrity AAABoot Process

Data at
RestTrusted Boot Secure Boot Remote

Attestation
Data in
Process

Data in
Motion

Authentica -
tion

Authorization Accounting

Availability
Intrusion Protection Managemet CountermeasuresWhitelisting

FirewallFile
Integrity

Access
Control

Malicious Soft-
ware Prevention

Device Man -
agement

Security
Policy

H/W Anti-Tam -
per Support

Patch
Management

Attestation

5.2.2
5.2.3
6.2.2

2.3.4 5.2.1
6.2.4
8.1

5.2.2
5.2.3
6.2.3
6.2.4

5.2.2
6.2.3
8.1
8.2.2.2
8.2.3

5.2.2
8.1
8.2.5

5.2.1
8.1

5.2.1
6.2.4
8.1
8.2.5

Table 6. Medical Case Study — Confidentiality Mapping

Confidentiality

Privacy Key ManagementSeparation

Data in
MotionPartitioning Convert

Channels Sanitization Data at Rest
Key
Distribution

Key
Generation

7-x
18-2

6-x
16-2

17-1

Table 7. Medical Case Study — Integrity Mapping

Integrity

Data Integrity AAABoot Process

Data at
RestTrusted Boot Secure Boot Remote

Attestation
Data in
Process

Data in
Motion

Authentica-
tion

Authorization Accounting

15-2
15-10

15-2
15-10

2
2-1
2-2.x
2-3.x
10-1.2

7-x
9-x
19-1

9-x
15-2
19-1

1-1
11-x

3-x

Table 8. Medical Case Study — Availability Mapping

Availability
Intrusion Protection Management CountermeasuresWhitelisting

FirewallTrusted Boot Secure Boot Malicious Soft-
ware Prevention

Device Man -
agement

Security
Policy

H/W Anti-Tam -
per Support

Patch
Management

Attestation

3-x
8-x
10-1.3
15-4
15-5
20-2

10-1
15-4
15-9

10-1
15-9

10-1.21-1.1
11-x
15-7
15-8
18-3
20-2

3-x
4-x
10-1.1
15-5
15-6
15-9
15-11
20-2
21-2.1

10-1.1
10-2
10-3
15-11

13-x 5-x

Ethernet
Airborne Trusted Platform

Information Assurance Foundation Secure Boot

VxWorks 653 3.0

Information
Assurance

Foundation-
Crypto

Device
Cloud
Client

Customer’s Avionics
System Partitioned

Applications

Maintenance Application

Ethernet
Ground Station Equipment Trusted Platform

Information Assurance Foundation Secure Boot

Wind River Linux

Device
Cloud
Server

Customer’s Ground Station
Equipment Application

Information
Assurance

Foundation-
Crypto

Security
Policy

Figure 20. Aerospace case study — a notional approach

Ethernet Ethernet Ethernet
Trusted Platform

Information Assurance Foundation Secure Boot

Wind River Linux

Device
Cloud
Agent

Customer ApplicationInformation
Assurance
Foundation-
Crypto

Security
Policy

Private
NetworkInternet

Device
Cloud

Figure 21. Medical case study—a notional approach

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

16 | White Paper

1.	 “Information Security,” [Online]. Available: https://en.wikipedia.

org/wiki/Information_security.

2.	 C. Perrin, “The CIA Triad,” 30 June 2008. [Online]. Available: www.

techrepublic.com/blog/it-security/the-cia-triad.

3.	 RTCA, Inc., “Airworthiness Security Process Specification,” 2014,

p. 21. [Online]. Available: https://standards.globalspec. com/

std/9869201/RTCA%20DO-326.

4.	 Seventh Framework Programme, “Security Requirements

of Vehicle Security Architecture,” June 2011, p. 26. [Online].

Available: www.preserve-project.eu/www.preserve-project.eu/

sites/preserve-project.eu/files/PRESERVE-D1.1-Security%20

Requirements%20of%20Vehicle%20Security%20Architecture.pdf.

5.	 Department of Defense, “DoD Information Security Program:

Protection of Classified Information,” p. 105. [Online]. Available:

https://www.esd.whs.mil/Portals/54/Documents/DD/

issuances/dodm/520001_vol3.pdf.

6.	 National Institute of Standards and Technology, “Guide to

Industrial Control Systems (ICS) Security, Special Publication

800-82,” June 2011, p. 1. [Online]. Available: https://nvlpubs.nist.

gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf.

7.	 “Content of Premarket Submissions for Management of

Cybersecurity in Medical Devices.” [Online]. Available: https://

www.fda.gov/media/119933/download.

8.	 Department of Health & Human Services, “Guidance to Render

Unsecured Protected Health Information Unusable, Unreadable,

or Indecipherable to Unauthorized Individuals,” [Online].

Available: https://www.hhs.gov/hipaa/for-professionals/breach-

notification/guidance/index.html.

9.	 F5 Labs, “What Is the CIA Triad?” https://www.f5.com/labs

articles/education/what-is-the-cia-triad.

10.	National Security Agency, “Defense in Depth,” [Online]. Available:

https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/

defense-in-depth.cfm.

11.	Security Snobs, “Types of Locks,” [Online]. Available: https://

securitysnobs.com/Types-Of-Locks.html.

12.	B. Schneier, “Class of Algorithms,” in Applied Cryptography, John

Wiley & Sons, Inc., 1996, p. 217.

13.	E. Barker, “Recommedation for Key Management —

Part1: General (Revision 4),” September 2015, p. 62–66.

[Online]. Available: https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-57pt1r4.pdf.

14.	E. Barker, “Transitions: Recommendation for Transitioning the

Use of Cryptographic Algorithms and Key Lengths,” November

2015, p. 7, 9-10. [Online]. Available: https://nvlpubs.nist.gov/nist-

pubs/SpecialPublications/NIST.SP.800-131Ar2.pdf.

15.	Barker, p. 33–46.

16.	National Institute of Standards and Technology, “Federal

Information Processing Standards Publication 197,” 26

November 2001. [Online]. Available: http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

17.	Barker, p. 7.

18.	“INFORMATION SECURITY: FAA Needs to Address Weaknesses

in Air Traffic Control Systems,” Government Accounting Office,

29 January 2015. [Online]. Available: www. gao.gov/products/

GAO-15-221.

19.	Trusted Computing Group, “Secure Embedded Platforms with

Trusted Computing: Automotive and Other Systems in the

Internet of Things Must Be Protected,” June 2012. [Online].

Available: https://trustedcomputinggroup.org/wp-content/

uploads/Secure-Embedded-Platforms-with-Trusted-Computing-

Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-

Be-Protected.pdf.

20.	Committee on National Security Systems, “Use of Public

Standards for Secure Information Sharing,” 1 October 2012.

[Online]. Available: http://www.cnss.gov/CNSS/issuances/

Policies.cfm.

21.	National Security Agency, “Guide to Industrial Control Systems

(ICS) Security,” May 2013. [Online]. Available: https://nvl-pubs.

nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf.

22.	M. Scholl and A. Regenscheid, “Safeguarding Data Using

Encryption,” 2014. [Online]. Available: http://csrc.nist.gov/news_

events/hipaa-2014/presentations_day1/scholl_hipaa_2014_

day1.pdf.

23.	National Institute of Standards and Technology 2015, p. 3.

24.	Internet Engineering Task Force, “IP Security (IPsec) and

Internet Key Exchange (IKE) Document Roadmap,” February

2011. [Online]. Available: https://tools.ietf.org/html/rfc6071.

25.	Network Working Group, “The Transport Layer Security (TLS)

Protocol, Version 1.3,” August 2018. [Online]. Available: https://

tools.ietf.org/html/rfc8446.

26.	Network Working Group, “HTTP Over TLS,” May 2000.[Online].

Available: https://tools.ietf.org/html/rfc2818.

REFERENCES
Note: All web links accessed 6 February 2020

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
http://www.techrepublic.com/blog/it-security/the-cia-triad
http://www.techrepublic.com/blog/it-security/the-cia-triad
https://standards.globalspec.com/std/9869201/RTCA%20DO-326
https://standards.globalspec.com/std/9869201/RTCA%20DO-326
https://www.preserve-project.eu/www.preserve-project.eu/sites/preserve-project.eu/files/PRESERVE-D1.1-Security%20Requirements%20of%20Vehicle%20Security%20Architecture.pdf
https://www.preserve-project.eu/www.preserve-project.eu/sites/preserve-project.eu/files/PRESERVE-D1.1-Security%20Requirements%20of%20Vehicle%20Security%20Architecture.pdf
https://www.preserve-project.eu/www.preserve-project.eu/sites/preserve-project.eu/files/PRESERVE-D1.1-Security%20Requirements%20of%20Vehicle%20Security%20Architecture.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/520001_vol3.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/520001_vol3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.fda.gov/media/119933/download
https://www.fda.gov/media/119933/download
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/defense-in-depth.cfm
https://apps.nsa.gov/iaarchive/library/ia-guidance/archive/defense-in-depth.cfm
https://securitysnobs.com/Types-Of-Locks.html
https://securitysnobs.com/Types-Of-Locks.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.gao.gov/products/gao-15-221
https://www.gao.gov/products/gao-15-221
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://www.cnss.gov/CNSS/issuances/Policies.cfm
https://www.cnss.gov/CNSS/issuances/Policies.cfm
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://csrc.nist.gov/presentations/2014/hipaa-2014-safeguarding-data-using-encryption
https://csrc.nist.gov/presentations/2014/hipaa-2014-safeguarding-data-using-encryption
https://csrc.nist.gov/presentations/2014/hipaa-2014-safeguarding-data-using-encryption
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc2818

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the digital
transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 06/2021

27.	K. McKay and D. Cooper, “Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS)

Implementations,” August 2019. [Online]. Available: https://nvl-

pubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.

pdf.

28.	P. R. Egli, “Internet Security,” 15 February 2011, p. 39. [Online].

Available: www.indigoo.com/dox/itdp/10_Security/Internet-

Security.pdf.

29.	United States Computer Emergency Readiness Team,

“Understanding Denial-of-Service Attacks,” 20 November 2019.

[Online]. Available: https://www.us-cert.gov/ncas/tips/ST04-015.

30.	T. Hardjono and G. Kazmierczak, “Overview of the TPM Key

Management Standard,” Trusted Computer Group, p. 6. [Online].

Available: https://trustedcomputinggroup.org/resource/

overview-of-the-tpm-key-management-standard/.

31.	T2080 Product Brief, April 2014. [Online]. Available: https://www.

nxp.com/docs/en/product-brief/T2080PB.pdf.

32.	R. Kissel, A. Regenscheid, M. Scholl, and K. Stine, “Guidelines for

Media Sanitization,” December 2014. [Online]. Available: http://

nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

88r1.pdf.

33.	SANS Institute, “Covert Data Storage Channel Using IP Packet

Headers,” Feb 2008. [Online]. Available: https://www.sans. org/

reading-room/whitepapers/covert/paper/2093.

34.	J. Thyer, “Covert Timing Channels Design and

Detection,” [Online]. Available: https://www.

sansorg/reading-room/whitepa-pers/covert

covert-data-storage-channel-ip-packet-headers-2093.

35.	A. Mileva, A. Velinov, and D. Stojanov, “New Covert Channels in

Internet of Things,” Securware2018, [Online]. Available: http://

eprints.ugd.edu.mk/20423/1/securware_2018_2_10_30122.pdf.

36.	E. Barker, M. Smid, D. Branstad, and S. Chokhani, “A Framework

for Designing Cryptographic Key Management Systems,” August

2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-130.pdf.

37.	J. M., “Intel Digital Random Number Generator (DRNG) Software

Implementation Guide,” Intel, 15 May 2014. [Online]. Available:

https://software.intel.com/en-us/articles/intel-digital-random-

number-generator-drng-software-implementation-guide.

38.	Freescale Semiconductor, “QorIQ P4080 Communications

Processor Product Brief,” September 2008, p. 23. [Online].

Available: http://cache.freescale.com/files/32bit/doc/prod_

brief/P4080PB.pdf.

39.	J. M., “How to use the RDRAND engine in OpenSSL for random

number generation,” 30 July 2014. [Online]. Available: https://

software.intel.com/en-us/articles/how-to-use-the-rdrand-

engine-in-openssl-for-random-number-generation.

40.	Information Technology Laboratory, “Federal Information

Processing Standards Publication, Secure Hash Standard

(SHS),” August 2015. [Online]. Available: http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.180-4.pdf.

41.	J. Boyens et al, “Supply Chain Risk Management Practices

for Federal Information Systems and Organizations,” April

2015. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-161.pdf.

42.	G. Coker et al, “Principles of Remote Attestation,” [Online].

Available: http://web.cs.wpi.edu/~guttman/pubs/good_attest.

pdf.

43.	Network Working Group, “The Kerberos Network Authentication

Service (V5),” July 2005. [Online]. Available: https://www.ietf.org/

rfc/rfc4120.txt.

44.	“Firewall (computing),” [Online]. Available: https://en.wikipedia.

org/wiki/Firewall_(computing).

45.	McAfee Labs, “141 Cybersecurity Predictions for 2020”

[Online]. Available: https://www.forbes.com/sites/

gilpress/2019/12/03/141-cybersecurity-predictions-for-

2020/#623f8cb61bc5.

46.	“Tamperproofing” [Online]. Available: https://en.wikipedia.org/

wiki/Tamperproofing.

47.	National Electrical Manufacturers Association,

“Manufacturer Disclosure Statement for Medical Device

Security,” 2019. https://www.nema.org/Standards/view/

Manufacturer-Disclosure-Statement-for-Medical-Device-Security.

48.	K. Herold, “Choosing Linux for Medical Devices,” [Online].

Available: events.windriver.com/wrcd01/wrcm/2016/08/

WP-future-proof-your-medical-device-designs-with-wind-river-

linux.pdf.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
http://www.indigoo.com/dox/itdp/10_Security/Internet-Security.pdf
http://www.indigoo.com/dox/itdp/10_Security/Internet-Security.pdf
https://www.us-cert.gov/ncas/tips/ST04-015
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/
https://www.nxp.com/docs/en/product-brief/T2080PB.pdf
https://www.nxp.com/docs/en/product-brief/T2080PB.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://www.sans.org/reading-room/whitepapers/covert/paper/2093
https://www.sans.org/reading-room/whitepapers/covert/paper/2093
https://www.sans.org/reading-room/whitepapers/covert/covert-data-storage-channel-ip-packet-headers-2093
https://www.sans.org/reading-room/whitepapers/covert/covert-data-storage-channel-ip-packet-headers-2093
https://www.sans.org/reading-room/whitepapers/covert/covert-data-storage-channel-ip-packet-headers-2093
http://eprints.ugd.edu.mk/20423/1/securware_2018_2_10_30122.pdf
http://eprints.ugd.edu.mk/20423/1/securware_2018_2_10_30122.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implem
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implem
http://cache.freescale.com/files/32bit/doc/prod_brief/P4080PB.pdf
http://cache.freescale.com/files/32bit/doc/prod_brief/P4080PB.pdf
https://software.intel.com/en-us/articles/how-to-use-the-rdrand-engine-in-openssl-for-random-number-
https://software.intel.com/en-us/articles/how-to-use-the-rdrand-engine-in-openssl-for-random-number-
https://software.intel.com/en-us/articles/how-to-use-the-rdrand-engine-in-openssl-for-random-number-
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
http://web.cs.wpi.edu/~guttman/pubs/good_attest.pdf
http://web.cs.wpi.edu/~guttman/pubs/good_attest.pdf
https://www.ietf.org/rfc/rfc4120.txt
https://www.ietf.org/rfc/rfc4120.txt
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Firewall_(computing)
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/#623f8cb61bc
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/#623f8cb61bc
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/#623f8cb61bc
https://en.wikipedia.org/wiki/Tamperproofing
https://en.wikipedia.org/wiki/Tamperproofing
https://www.nema.org/Standards/view/Manufacturer-Disclosure-Statement-for-Medical-Device-Security
https://www.nema.org/Standards/view/Manufacturer-Disclosure-Statement-for-Medical-Device-Security
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-future-proof-your-medical-device-designs-with-wind-river-linux.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-future-proof-your-medical-device-designs-with-wind-river-linux.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-future-proof-your-medical-device-designs-with-wind-river-linux.pdf

