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ABSTRACT

This paper examines the implementations of the well-known information security1 components 

of confidentiality, integrity, and availability (the CIA triad2) as applied to embedded systems, and 

how these implementations can be used to defend against various attacks. 

The approaches taken by this paper are widely applicable to embedded systems in a 

variety of markets, including aerospace,3 automotive,4 defense,5 industrial,6 medical,7,8 and 

networking,9 and are directly applicable to the protection of the intellectual property (IP) of  

the vendor.

The CIA Triad is authoritatively defined in:  

United States Code, 2006 Edition, Supplement 5  
Title 44 - Public Printing and Documents  
Chapter 35 - Coordination of Federal Information Policy 
Subchapter III - Information Security  
Section 3542 - Definitions
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THE CIA TRIAD

The CIA triad is the foundational security principle for the protection 

of an asset. Its three components can be thought of as similar to the 

components of security for the contents of a home:

•	 Confidentiality is defined as maintaining the privacy of an asset. 
Solid doors, walls, and window coverings provide privacy for the 
contents of a residence.

•	 Integrity is defined as maintaining the content of the asset. An 
alarm system, a fence, and locks on the doors and windows 
maintain the integrity of a residence, such that the contents of 
the residence are kept intact.

•	 Availability is defined as the accessibility of the asset. The con-
tents of the residence are available to the residents via pass-
codes to the alarm system and keys to the door locks.

The CIA triad can be further broken down into categories, which can 

then be broken down into implementations, as shown in Figure 1.  

The remainder of this paper will discuss these subprinciples and how 

each can be used to secure an embedded system.

Application of the CIA triad begins with the security assessment. 

The security assessment determines which CIA implementations 

are required based on vulnerabilities, risks, regulatory require-

ments, and IP protection needs, and balances those needs against 

cost, performance, and the operational environment. The security 

assessment will provide the Security Policy, which defines the 

security objectives for the embedded system: what the security-

related events are, how they are to be constrained, when they are 

to be reported, and what actions to take in response to the events. 

The security assessment also provides the processes within the 

development cycle to assure that the security-related principles are 

implemented. 

DEFENSE-IN-DEPTH APPROACH

No single security principle by itself can provide complete protection 

for an embedded system. Rather, it is the proper layering of these 

defenses that will provide a much stronger, multifaceted protection 

for the embedded system. The concept of layering these principles 

together is known as defense in depth.10 

Many factors dictate the security components that need to be 

included to protect an embedded system; the security assessment 

will uncover the required components. 

CONFIDENTIALITY FOR EMBEDDED SYSTEMS 

Confidentiality implementations are used to protect the privacy of 

data in embedded systems. This protection includes data pass-

ing to/from the embedded system (data in motion), data that are 

stored on the embedded system such as on disk drives and/or in 

nonvolatile memory (data at rest), and data that are being pro-

cessed on the embedded system (data in process). Confidentiality 

can be partitioned into three categories: privacy, separation, and 

key management (as shown in Figure 2 along with their associated 

implementations).

Privacy Implementations

Privacy is achieved through the use of cryptographic algorithms 

on the data (encryption), making it nonsensical to an unauthorized 

individual. An authorized individual can restore the data to its original 

form (decryption). Just as there are different types of door locks,11 

there are different types of cryptographic algorithms based on the 

need. Types of cryptographic algorithms used for confidentiality 

include the following:12
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Figure 1. CIA triad principles

Figure 2. Confidentiality implementations
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•	 Symmetric algorithms
	– Stream cipher: Processing data one datum at a time
	– Block cipher: Processing data one group (multiple data) at a 

time
•	 Asymmetric (also known as public key) algorithms

The strength of the privacy provided is based on the combination of 

the cryptographic algorithm and the length of the associated key.13 

Industryapproved cryptographic algorithms and key lengths are 

provided in Barker, “Transitions: Recommendation for Transitioning 

the Use of Cryptographic Algorithms and Key Lengths.”14

The length of time in which a cryptographic key should be used is 

called a cryptoperiod. Cryptoperiods vary based on the algorithm, key 

length, usage environment, and volume of data that is being protected. 

Guidance for cryptoperiods can be found in Barker, “Recommedation 

for Key Management — Part1: General (Revision 4).”15

Symmetric cryptographic algorithms use the same key for both the 

encryption and decryption processing. This would be similar to a 

door lock that is keyed on both sides of the door for the same key: 

lock the door from the inside (encryption); unlock the door from 

the outside (decryption). An example of a symmetric algorithm 

is the Advanced Encryption Standard (AES).16 AES is an industry-

approved symmetric algorithm17 for providing confidentiality of 

sensitive data. Figure 3 shows a typical symmetric cryptographic 

workflow. In the embedded arena, sharing a cryptographic key 

can be challenging because of the large number of end points 

involved. This challenge will be addressed in the “Key Management 

Implementations” section of this paper.

Asymmetric cryptographic algorithms are also called public key 

algorithms. This type of algorithm requires two keys (a key pair): 

one that is kept private and one that can be made public. The pri-

vate key is kept tightly protected and is accessible by as few indi-

viduals as possible. The public key can be accessible by others, 

but does require a level of protection in an embedded environment, 

as its corruption could cause a denial-of-service (DoS) attack. The 

asymmetric algorithm provides for encryption to be completed by 

the public key and the decryption completed by the private key. 

Figure 4 presents an asymmetric cryptographic workflow. 

A downside of asymmetric cryptography is that it requires more 

processing power and longer-length keys to achieve a level of 

security comparable to symmetric cryptography. For this reason, 

asymmetric cryptography is typically used for the generation and 

verification of digital signatures. This use will be discussed in the 

“Integrity for Embedded Systems” section of this paper.

Protecting the confidentiality of data in an embedded system-

can be a regulatory requirement, a method to protect IP, or an 

industry-recommended requirement (for example, in aerospace,18 

automotive,19 defense,20 industrial,21 medical,22 and networking23).

Data in an embedded system can be in one of three states: in 

motion, at rest, or in process. Data in motion is data passing to/ 

from the embedded system; data in process is data generated or 

consumed within an embedded system; and data at rest is data 

stored on the embedded system.

Data in an embedded system can be in one of three states: in 

motion, at rest, or in process. Data in motion is data passing to/

from the embedded system; data in process is data generated or 

consumed within an embedded system; and data at rest is data 

stored on the embedded system.

Data-in-Motion Privacy

The data being passed over the network can be more than just the 

data being generated or consumed by an embedded system. The 

management data to and from the embedded system is just as 

critical. Updates and patches, telemetry, and logging informa-tion 

can be of significant value to an attacker, so protection of this data 

is paramount to securing the embedded system. An attacker will 

monitor the behavior of the embedded system when stimuli are 

applied during attacks; by observing the response from the system, 

the attacker can plan the next step in the attack process. 
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Many implementations for protecting the confidentiality of data 

in motion are available. These implementations can operate at 

different levels of the network stack — for example, Internet Protocol 

Security (IPsec),24 Transport Layer Security (TLS),25 and HyperText 

Transfer Protocol (HTTP) over TLS (HTTPS)26 — and these just 

scratch the surface, as shown in Figure 5. Recommendations 

for securing data in motion are provided in McKay and Cooper, 

“Guidelines for the Selection, Configuration, and Use of Transport 

Layer Security (TLS) Implementations,”27 using the TLS protocol.

Data-at-Rest Privacy

Protection of data stored on an embedded system, whether on a 

disk drive, a USB stick, or in nonvolatile RAM, can include the data 

produced or consumed by the embedded system, patches or other 

updates, telemetry data, IP, and logging information. These data 

can be very valuable to attackers if stolen, and if corrupted, can 

also disrupt the operation of the embedded system, causing a DoS 

attack.29

Protection of data at rest is typically implemented by the use of 

symmetric cryptography. Symmetric cryptographic algorithms 

such as AES are ideally suited for protecting data at rest, as they are 

fast and can accomplish strong levels of protection using shorter 

key lengths than asymmetric cryptography. The symmetric key, 

however, must be tightly protected on the device to maintain the 

privacy of the data. Secure storage of the symmetric key is best 

accomplished using hardware assistance such as the Trusted 

Platform Module30 or the Secure Key Management Module of an 

NXP (formerly Freescale) QorIQ processor.31 If hardware assistance 

is not available for key storage, a software implementation can then 

be used that utilizes obfuscation to achieve its protection.

The usage environment of the embedded system may have an 

impact on the generation of the key. For example, if the data need 

to be recovered and the embedded system becomes inoperable, 

the ability to have a duplicate key is then required. Conversely, if 

the data are isolated to the embedded system and do not need 

to be recovered, the key can be randomly generated and stored 

solely on the embedded system in a hardware-assisted, protected 

mechanism.

Sanitization

When critical data are no longer needed on the embedded system, 

they should be sanitized to prevent loss of privacy. To minimize the 

potential attack surface, the data’s memory locations should be 

overwritten, including the stack. The simplest method of keeping 

the stack sanitized is to initialize all local variables within a function 

when the variables are defined. As the functions are executed, the 

stack is auto-sanitized as a result.

Because the use of cryptographic algorithms inherently requires 

the generation and use of a cryptographic key, the means to destroy 

or erase this key and associated data is required. By encrypting all 

data at rest on the embedded system, sanitization can be completed 

by the destruction of the cryptographic key(s) used to protect that 

data. Once the key is destroyed, the data cannot be restored and 

will remain nonsensical. This approach is called cryptographic 

erase.32 Destruction of the cryptographic key(s) is based on the 

hardware device, if hardware is used. If not, a series of overwrites 

of alternating data patterns over the key storage area can be used. 

Separation Implementations

The architecture of the embedded system provides a level of con-

fidentiality by keeping independent functions isolated from each 

other. For example, the function that provides connectivity to the 

Internet can be kept separate from the function that accesses the 

sensors the embedded system is managing, with strict information 

flows between the two. This constrains an attack on the Internet 

connectivity function from impacting the sensor management 

function.

Partitioning (Data in Process)

Isolating processes on the system provides a level of confidentiality 

by assuring that each process cannot access or interfere with other 

processes. A typical implementation of separation uses a Type 1 

hypervisor that resides directly above the processor. The hypervisor 
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defines partitions by assigning resources (memory, devices, cores, 

etc.) to each partition, and executes the process(es) within each 

partition. The processes can execute within the defined partition 

and maintain the privacy of its data from other processes on the 

processor.  

Communication channels between the partitions can be provided 

by the hypervisor to include shared memory regions or an inter-

partition communication mechanism. These communication chan-

nels can be restricted in terms of direction of flow, access rights, 

and whether or not the hypervisor itself is involved in the com-

munication flow.

The assignment of resources and definition of the communication 

channels is defined in the hypervisor’s Security Policy. The Security 

Policy creates the time and space allocation for each partition along 

with the channels of communication, if any. This communication 

policy can be as high level as “yes” or “no,” or granular enough to 

constrain the size of the message, the data rate, and the direction 

of the communication path.

Covert Channels

Care must be taken in the implementation and usage of communi-

cation channels. An unintended path of communication could be 

created, exposing critical data to an attacker. These unintended 

communication paths are called covert channels and come in 

two forms: covert storage channels and covert timing channels. A 

covert storage channel is created when data are passed against 

the intent of the Security Policy. An example of this is using the IP 

packet header to transmit data.33 A covert timing channel is cre-

ated when the occurrence of an event over a period of time passes 

information.34

Covert channels can exist in all types of computing environments, 

from within a partitioned system to a typical embedded system.35 

When strong security is required, an analysis should be performed 

to identify and remove or mitigate channels that could be used by 

an attacker.

Key Management Implementations

Coordinating the creation, use, delivery, and updating of crypto-

graphic keys is called key management. The complexity of key 

management is based on the number of keys, the number of sys-

tems that require those keys, and the cryptoperiod of each key.

In the simplest but least secure form of key management, all 

embedded systems use the same key for an infinite amount of 

time (i.e., non-expiring cryptoperiod). This configuration provides 

for a level of privacy by using cryptography (with the assumption 

it is correctly applied), but has the risk of exposing all embedded 

systems to attack if the key is ever compromised. In contrast, a 

configuration where each embedded system has its own unique key 

for a short, random cryptoperiod leads to much stronger security.

The complexity of ensuring that the many systems in a typical 

embedded environment have the correct cryptographic keys and 

maintain their recommended cryptoperiods demands a central key 

management system that implements the framework specified in 

Barker, Smid, Branstad, and Chokhani, “A Framework for Designing 

Cryptographic Key Management Systems.”36

Key Generation

Random numbers are a cornerstone to the effectiveness of cryp-

tography. Pseudo-random numbers (PRN) are a starting point, but 

they do not provide the strength of a true (entropic) random number 

(TRN) generator. The issue with PRNs is that they are deterministic 

by definition, as they are generated by a mathematical equation. 

Determinism in cryptographic key generation is counterproductive 

because if the starting point of the PRN (the “seed”) is found, the 

cryptographic key can be determined in a much shorter timeframe.

Because of the shortcomings of a PRN, a hardware-based random 

number generator that provides true entropy can be used for the 

generation of strong cryptographic keys. Modern Intel® proces-

sors have specific instructions37 available and the NXP processors 

have a hardware-based random number generator available in their 

SEC module.38 With this hardware support, a platform is available 

such that cryptographic keys can always be created using a TRN 

generator.39 If hardware support is not available, there are software-

based alternatives that can be used to ensure a quality source of 

entropy.

Key Distribution

Extreme care is required when distributing cryptographic keys to 

embedded systems. Verification of the destination embedded 

system must be absolute to ensure the keying material does not 

mistakenly fall into an attacker’s hands. The keying material must 

be kept confidential, from the source to the destination embedded 

system and within the embedded system, until it is needed. The 

embedded system must have absolute verification of the source 

of the key distribution to ensure an attack is not being launched 

against it. By using an attacker’s keying material, the embedded 

system unknowingly loses the confidentiality of its data in motion.
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INTEGRITY FOR EMBEDDED SYSTEMS

Integrity implementations are used to ensure that the data of 

the embedded system have not been modified or deleted by an 

attacker. These data include the data being generated or con-

sumed by the embedded system, along with its programming data 

(operating system, applications, configuration data, etc.). As with 

confidentiality, integrity applies to the three states in which data 

exist: in motion, at rest, and in process.

Integrity of data is typically verified by a mathematical algorithm 

called a hash. There are many implementations of hash functions, 

but the one selected must minimize, if not completely remove, the 

risk of a collision where more than one input can generate the same 

output (the message digest). These types of hashes are called 

Secure Hash Algorithms (SHA).40 By minimizing the chance that the 

changed data hashes to the same value as the original data, this 

removal of collision risk increases the probability of a change to the 

data being verified. As shown in Figure 6, the  categories of integrity 

for an embedded system are: data integrity, boot process, and AAA.

Data Integrity Implementations 

The data within an embedded system can include the operating 

system, the applications, and the configuration data. If any of 

these data are corrupted, the embedded system will not perform 

its intended function, or the embedded system can become an 

instrument for the attacker to use on the fabric of the embedded 

system itself (also known as a Bot). Disruption of the integrity of the 

data on the embedded system is like disruption of the foundation 

of a residence: the components above it are weakened and  cannot 

be trusted.

Data-in-Motion Integrity 

Many embedded systems have the requirement of passing data to/

from the device. The data must be protected against modification, 

either intentional (through an attack) or unintentional (through a 

programming error), while being transmitted from source to des-

tination. A hash can be used, but the attacker can circumvent this 

measure by simply recalculating a new message digest after the 

modification has been made. A stronger integrity mechanism is 

a keyed-hash message authentication code (HMAC). The HMAC 

provides a data integrity check with a shared private key, as shown 

in Figure 7. Because the HMAC requires a key, it must be protected 

just like a cryptographic key.

Data-at-Rest Integrity

The integrity of critical data on the embedded system must 

be verified before they can be relied upon for processing. The 

verification of the programming data will be covered in the “Secure 

Boot” section of this paper. Verification of the configuration and 

site-specific data should be completed prior to operating on that 

data to ensure no modifications to these data have been made by 

an attacker. Using an HMAC, the message digest of the data can 

be calculated (periodically and before shutdown) and verified (at 

startup and periodically).

Data-in-Process Integrity 

As data are being generated or consumed on the embedded sys-

tem, integrity checks can be used to ensure that the processing 

flow can be trusted and that the correct data are being processed. 

Unique enumeration values throughout the software and for all 

data types can be used to verify the processing flow integrity. This 

approach ensures that each application programming interface 

(API) is called with the parameters that are unique to only that API, 

and thus maintains the integrity of the processing flow.
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Boot Process Implementations

Starting the embedded system with known, authenticated soft-

ware is foundational to securing the embedded system. Without 

a boot process that proves the embedded system is starting with 

unmodified software and data, the system cannot be trusted. The 

verification must include boot code, application code, and critical 

data that are stored on the system (data at rest).

The boot process is partitioned into two parts, as shown in Figure 

8. The Secure Boot phase is controlled by the trusted hardware plat-

form, and the Trusted Boot phase is controlled by the previously 

verified software.

Secure Boot

Secure Boot starts with the platform and the pedigree of that 

platform. A Trusted Platform is hardware that has been purchased 

through approved channels of distribution by the technology sup-

plier.41 Upon receipt of the platform, it must be validated that the 

correct item was received, its delivery path is sensible, its delivery 

time is justified, and its tamper-resistant packaging is intact. Only 

then can the platform become a Trusted Platform.

One of the security features that the Trusted Platform must pro-

vide for is a mechanism to verify the boot software of the embed-

ded system. This mechanism enables an unchangeable (due to 

its implementation in hardware) process to verify the first piece 

of software in the boot process. The verification process is best 

implemented using digital signatures. 

Digital signatures combine the use of a hash function’s message 

digest along with the asymmetric private-key encryption of that 

hash function by the author. The Trusted Platform verifies that digi-

tal signature by recalculating the message digest, decrypting the 

associated digital signature with the public key, and comparing the 

message digests. If the message digests match, then the integrity 

of the software is verified. This workflow is shown in Figure 9, and 

differs from what is shown in Figure 4, as that workflow was for 

confidentiality and this workflow is for integrity. 

Trusted Boot

Trusted Boot is the progression of a boot process where individual 

images and data are verified by previously verified software. It is 

best if this process includes hardware assist to perform the verifi-

cation processing, because the immutable properties of hardware 

(whether system-on-chip [SoC] or field programmable gate array 

[FPGA]) mitigates the risk of a malicious change causing a breach 

in verified boot processing. The process of one verified image 

passing control to another verified image is called a chain of trust 

(see Figure 10). The chain-of-trust approach ensures that only veri-

fied software is loaded into the system.

Remote Attestation

Remote attestation42 is the process of taking “measurements” 

during the Secure Boot and Trusted Boot phases of the boot 

sequence and reporting these measurements to a physically sepa-

rate server, as shown in Figure 11. These measurements are typi-

cally a hash of the components of the boot process (bootloader, 

applications, etc.). The server than compares these measurements 

and determines the trustworthiness of the embedded system. The 

transmission of the measurements is secured and must include the 

identity of the embedded system. This identity is most secure if it 

is a hardware-bound identity, such as found in a Trusted Platform 

Module (TPM). The baseline measurements must be made in a 

trusted environment and by trusted individual(s).
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Remote attestation is best for an embedded system that is “always 

on” a network connection (rather than one that has limited network 

connectivity) so that a mismatch in the measurements can be 

quickly identified, and the response defined in the Security Policy 

can be enacted.

Authentication/Authorization/ Accounting (AAA) 
Implementations

Security risks increase as the level of exposure of an embedded 

system to the Internet increases. Couple exposure to the Internet 

with a network configuration that is dynamic, and the embedded 

system requires a layering of defenses to maintain the integrity 

of its knowledge of the other devices it communicates with. This 

layering of integrity defenses is called authentication, authoriza-

tion, and accounting (AAA, pronounced “triple A”). AAA provides a 

level of integrity for the embedded system in determining which 

other devices on its network it is allowed to communicate with and 

the type(s) of data that should be passed. 

Due to the nature and complexity of these defenses, a centralized 

server and toolset are required to properly manage the application 

of these defenses in an embedded systems environment and to 

analyze and respond to any received security events. 

Authentication

Authentication tries to answer the question: “Are you who you say 

you are?” in order to establish trust in the identity of the distant 

device the embedded system is attempting to communicate with 

over the network. To implement authentication, a trusted third party 

is required. This trusted third party mediates between the embedded 

system and the distant device (so both devices must be known to 

the trusted third party) and contains information about all devices 

on the network. A well-established protocol called Kerberos43 exists 

to establish this trust between devices over the network. Using the 

Kerberos-identified messages along with clarifying annotations, 

Figure 12 shows the message flow for the embedded system to 

establish its identity so it can communicate with the distant device 

over the network.

Authentication can also occur within the embedded system with 

its applications and operating system. In this case, the trusted 

third party consists of both the operating system and the Security 

Policy, which will have a set of identifying attributes unique to each 

application (whether a task, process, or partition). The operating 

system will have access to these immutable identifying attributes 

at runtime. When the application makes a service request to the 

operating system, the request includes these identifying attributes 

(without the awareness of the application). The operating system 

then has assurance of the source of the request prior to providing 

the service.

Authorization

After authentication, authorization typically follows, because the 

embedded system must be known before it is allowed to access 

other network resources. Authorization is the determination of the 

type of access allowed to a resource within the network. A network-

wide Security Policy defines what the resources are, the paths of 

communication to and from each resource, and to what level the 

access can occur (read versus read/write).
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Figure 11. Remote attestation workflow

Figure 13. Authentication provided by a robust operating system

Figure 12. Annotated Kerberos message flow
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Just as with authentication, authorization can occur within the 

embedded system as well. The Security Policy being enforced by 

the robust operating system is used to make the determination 

about whether the application is allowed to request the service. 

This is the second step shown in Figure 14.

Accounting

Accounting is the generation of a log of events that denote security-

related activities on and by the embedded system. This logging of 

events can occur within the embedded system or to an external 

server. The events to log and the response to those events are 

defined by the Security Policy.

Because impenetrable defenses are not possible, the ability to 

determine what led to an attack and what happened during the 

attack are critical in the feedback loop for improving the security 

of the embedded system. Security-related event logs must be col-

lected and analyzed to ensure the following:

1.	 The integrity of the embedded system can be monitored

2.	 An attack determination can be made

3.	 A response to the attack is made

It is best that these occur as near to real time as possible to 

minimize the damage from the attack. The Security Policy on the 

embedded system defines what the security-related events are and 

the initial, front-line response to that event.  

Because of the large number of embedded systems that must be 

monitored, along with the large number of events that need to be 

parsed and managed, a specialized server is required. This type 

of server is called a security information and event management 

(SIEM) server. A SIEM server is able to correlate received security 

event messages from embedded systems and use predictive ana-

lytics to determine if an embedded system is at risk of an attack. 

A SIEM server can also take as an input a continuous threat intel-

ligence feed to aid in its analysis of the security events. This intel-

ligence feed provides a larger view of the type of attacks that the 

embedded system may face.

A SIEM server is a powerful tool but also a very complex tool. The 

introduction of a SIEM server into an infrastructure must be care-

fully planned, and to be successful its capabilities must be allowed 

to evolve over time, as the administrators become more accus-

tomed to what it can provide.

A notional configuration of using a SIEM server is shown in Figure 15.

AVAILABILITY FOR EMBEDDED SYSTEMS

Availability implementations are used to ensure that an embedded 

system performs its intended function. The simplest and purest 

approach to ensuring availability for an embedded system is never to 

allow any changes to occur on the embedded system. Of course, this 

is unrealistic, because attacks over the Internet constantly evolve in 

sophistication, and the functionality of the embedded system itself 

evolves over time. Because of these competing goals (availability vs. 

enhancements), a series of implementations is required to reduce 

the risk of diminishing the availability of the embedded system. As 

shown in Figure 16, the categories of availability for an embedded 

system are: whitelisting, intrusion protection, management, and 

countermeasures.

Whitelisting Implementations

Whitelisting simply defines what is allowed. Anything that is not on 

the whitelist is denied. Whitelisting for an embedded system can be 

applied at the network level (what devices the embedded system 

can communicate with) and within the embedded system (what 

applications can be executed within the embedded system). The 

focus in this section will be within the embedded system, on what 

can be layered to maintain the availability of the embedded system.
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Figure 14. Authorization of a request provided by a robust operating system

Figure 15. Notional SIEM server usage
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Access Control

Defining which user or application can execute a specific service 

provided by the embedded system provides a level of defense 

against an attack. To correctly determine which user or applica-

tion is associated with an exploitable service of the embedded 

system, the attacker would need an almost a priori knowledge of 

the embedded system (and why the accounting implementation is 

required to detect this “guessing”). This user/application-to-service 

control is called access control. Access control is the policy that 

defines what a user or application can perform with a service 

the embedded system is providing. There are four different types 

of access controls as listed in Table 1, which also describes the 

management overhead of implementing the access control and 

the strength of access it provides (assuming the access control is 

non-bypassable).
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Figure 16. Availability implementations

Table 1. Access Control Types 

Access Control Type Definition Example Overhead Strength

Mandatory access 
control (MAC)

Each service is labeled and 
each user/application is 
labeled. Access is allowed 
only if the labels match.

“Only the maintenance application 
can access the reboot service of 
the embedded system.”

Very high

The labeling between the users/appli-
cations and services must be defined 
and maintained.

Strongest

Clearly defines what user/ applica-
tion can access what service.

Role-based access 
control (RBAC)

The access controls are spe-
cific to the role that the user/
application is providing.

“Only the network administrator 
application can update the AAA 
configuration.”

Medium

Once roles and services are defined, it 
becomes more of a maintenance task 
to keep them updated.

Medium-to-high

Based on the granularity of the 
roles defined.

Discretionary access 
control (DAC)

The access controls are 
specific to the user/applica- 
tion and defined by the user/
application.

“The file created by the Sensor 
Application can be read, but not 
written, by the Network Application.”

Very Low

It is up to the application to define the 
access control.

Weakest

Pushes determination to the 
application.

Rule-based access 
control (RBAC)

The access controls are 
based on a set of rules which 
are more than just the user/
application.

“Access to maintenance data is 
limited to 2300-2359 each night and 
only when the embedded system is 
at a maintenance facility.”

Medium-to-High 

Depends upon how fluid the rules are 
and if there are exception cases.

Medium

Depends on the stringency of the 
rules.
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File Integrity

Maintaining the integrity of the data files that are generated or 

consumed on the embedded system aid its availability by not 

allowing any corrupt or malicious data onto the device and not 

allowing a polluted file to pass through the embedded system. 

Depending on the environment in which the embedded system 

operates, how the embedded system is implemented, and the 

regulations with which the embedded system must be compliant, 

the integrity of the files and the list of files on the device must 

be closely monitored. Otherwise, the embedded system can be 

attacked and lose its availability.

Steganography is a form of covert channel where data are hidden 

in an unused portion of a file and are only evident by the antagonist 

and the intended recipient. These hidden data can include any type 

of confidential or protected data, or even malware.  

Borrowing from the integrity principle, a “seal” can be applied on 

the files as close to the source as possible, and as soon as the 

file is created, to provide the highest level of assurance that it has 

not been tampered with. It is best if the integrity seal is a digital 

signature, where the source has the closely guarded private key 

and the embedded system has the public key. The integrity seal is 

then verified by the embedded system as part of the boot process 

and before each access (i.e., read, execute, and pass-through [as 

needed]).

Intrusion Protection Implementations

Intrusion detection systems (IDS) and intrusion prevention 

systems (IPS) are common systems in the topology of a modern 

network. The terms can be confusing and overloaded, but Google 

searches yield the following definitions:

•	 Detect: To discover or identify the presence or existence of
•	 Prevent: To keep (something) from happening or arising
•	 Protect: To keep safe from harm or injury 

So protection of the embedded system against malicious software 

will be defined as:

protection :== detection + prevention

Intrusion protection is specific to an embedded system, depending 

on both its environment and its functionality. Intrusion protection 

provides a layer of defense within the embedded system to detect 

the presence of, and prevent damage from, malicious software 

executing within the embedded system’s memory space. Intrusion 

can occur through the network or through a separate device 

connected to the embedded system, such as a USB device.

Malicious Software Prevention

Preventing foreign software from executing within the embedded 

system requires a static inventory of what should be on the embed-

ded system, along with a known list of APIs that each application 

within the embedded system can access. This inventory includes 

the memory, the file system (if applicable), and the critical system 

APIs that are allowed to be called by each application.

The inventory of the file system and memory is protected, veri-

fied at startup, and periodically verified as the embedded system 

executes. The inventory needs to be defined in such a way that a 

straightforward verification process can occur (to minimize perfor-

mance impacts). It is best if the unused memory within the system 

can be periodically verified to ensure no malicious software has 

infiltrated the embedded system.

Applications should never be given complete access to all APIs 

available by the operating system. Rather, an enforced subset 

of the APIs that the application absolutely requires to fulfill its 

requirements should be allocated. This is the principle of least 

privilege, which states that an entity should be restricted in access 

to only those resources required to fulfill its function, and no more. 

For example, an application that monitors a sensor does not require 

access to APIs that control the execution model of the system. For 

better security, the enforcement of the APIs should be implemented 

by the OS against a statically defined configuration determined at 

build time.

As shown in Figure 18, protection against malicious software 

requires both the ability to detect and a mechanism to prevent an 

attack from the malicious software.
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Firewall

A firewall is defined as a system that monitors and controls the 

incoming and outgoing network traffic based on predetermined 

security rules.44 For an embedded system, it is best if the firewall 

rules are partitioned into different layers to simplify the manage-

ment of the rules, and more importantly, to distribute the rules 

across multiple applications and files to decrease the amount of 

damage that can be done by an attack. This layering of rules is 

shown in Figure 19, which shows how different applications modify 

the different firewall rules.

It is important that a firewall be able to determine anomalous 

behavior for communications ports. Each port into and out of the 

embedded system should be characterized to determine its data 

rate (either sustained or burst). The firewall should then contain 

rules to monitor the rate of data going through each port. This 

characterization can then be used to help in detecting an intrusion 

into the embedded system.

Embedded System Management Implementations

Since the embedded system connects to the Internet, it must oper-

ate in a dynamic and ever-growing cyberattack45 environment. A 

set-and-forget approach will protect the embedded system for only 

a short period of time. Rather, active management of the device is 

required to maintain its availability to perform its function. As with 

AAA, a centralized server and toolset are required to provide the 

level of management of a large number of embedded systems. 

 
Device Management

Communication between the embedded system and its centralized 

server must be the most protected and most layered communica-

tion within the device. Because of the administrative commands 

that drive the embedded system, this communication path is the 

most sought-after by an attacker. Faux-commands at random inter-

vals should be considered for several reasons. It will be difficult for 

the attacker to understand a pattern of communication, to deter-

mine if it is “real” or not, and to determine if it is due to a stimulus 

applied to the embedded system. These faux-commands should 

vary in size from a typical “real” command to a patch update and 

everything in between.

The embedded system requires different levels of management 

to maintain its availability. Overhead-type activities such as 

provisioning, commissioning, and general remote administration 

are typically required.

The next level of management involves the authentication and 

authorization described in the AAA section of this paper. It is man-

datory that the embedded system is not allowed to communicate 

with any device outside of its whitelist of approved devices, and that 

accounting entries are received when the communication is occurring.  

The highest level of management is that of security-related man-

agement. This includes off-loading security event logs, critical 

security events, and security-related patch updates.

Security Policy

The Security Policy describes what the embedded system needs 

to protect, how to protect it, and the events related to that protec-

tion. The Security Policy covers the implementations covered in 

this paper. Examples of items covered by the Security Policy are 

listed in Table 2. Protection of the Security Policy on the embedded 

system demands, at minimum, an integrity check to ensure it has 

not been corrupted. The embedded system will need to have a pre-

programmed response to a corrupt Security Policy (destruction of 

nonvolatile files, shutdown, etc.).

Countermeasure Implementations

Availability can be larger than the single embedded system, but can 

include a much larger group of embedded systems. The compromise 

of one embedded system can lead to a compromise of all embedded 

systems. Because of this, specific defenses are required to minimize 

an attack on the larger group of embedded systems. 

Hardware Anti-tamper Support

If an attacker has physical access to the embedded system, inter-

nal components of the device become a priority for the attacker, 

up to and including attaching an external device to the embedded 

system (e.g., a JTAG device). In general, embedded systems should 
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be encased and only necessary ports exposed. But if an attacker 

opens the case of the embedded system and has access to its 

components, great damage can occur not only to the device, but to 

the network that the embedded system resides on and the devices 

that it communicates with. A defensive layer against physical 

access to the embedded system can be implemented using anti-

tamper46 means provided by the Trusted Platform.

The embedded system’s Security Policy defines what is to be pro-

tected from a physical attack, but considerations should include 

encrypting applications and configuration data so that the cryp-

tographic key(s) is erased when a physical tamper event occurs 

(the sanitization implementation). This approach is outside the 

function of software and is completely implemented by the Trusted 

Platform. When the system attempts to boot, the software will not 

be able to be decrypted correctly, rendering its contents unusable 

by the attacker. The same applies for the configuration data (and 

other data) on the embedded system. Without the cryptographic 

key, the data on the file system is unreadable by the attacker. 

Although the attacked embedded system is no longer available, 

the remaining embedded systems and network continue to remain 

available.

Patch Management

A centralized server with a specialized toolset is required to man-

age the different patches on each embedded system. Because 

the embedded systems can reside in a large range of operational 

environments, some devices may require patches that other 

devices do not. These operational environments may also dictate 

a specific Security Policy that defines responses to certain attacks.

Attestation  

Portions of the embedded systems application are typically static 

during its operation. The application itself, its operating system, 

and its configuration data are typically static. These regions of the 

embedded system can be verified during execution with assistance 

from the Trusted Platform. Following the boot process, an integrity 

calculation can be made over these regions, and then subsequent 

integrity calculations can be made and verified against the boot-

time integrity calculation by the Trusted Platform until the following 

power cycle. If there is a mismatch with the boot-time integrity 

calculation, the Security Policy will state what the response should 

be, including a system restart to cause the embedded system to go 

through its boot device.

A change in the static region of the embedded system could 

indicate a programming error, or that an attack is occurring and 

attempting to disrupt the operation of the device. Using the Trusted 

Platform, the performance impacts of this implementation can be 

significantly minimized.

CASE STUDIES — HOW TO APPLY THE CIA TRIAD 

This section provides a notional representation of how to map 

a security specification to the implementations of the CIA 

triad defined in this paper. A security assessment is required 

to fully capture all requirements for a compliant solution (thus 

no warranty or claims are made on the solutions presented 

here), but this sec-tion illustrates how the implementations of 

the CIA triad are used to define a Wind River®–based solution. 
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Triad Implementation Security Policy Examples

Confidentiality Privacy Algorithm(s) to use for each path of communication and each data stored

The partitions in the system; information flow between those partitions; the devices accessible by the parti-
tions; the OS APIs allowed to be calledSeparation

The list of crypto keys and their cryptoperiod; how each key is protected and its destruction mechanismKey management

Integrity Data integrity Which integrity mechanisms to use on which data if applicable: the HMAC key and its cryptoperiod

What needs to be verified; what if a verification step fails (degraded mode)

Boot process What communication needs to be authenticated; what is authorized to be accessed on the device; security 
events that are to be logged locally and sent remotelyAAA

Availability Whitelisting What access control method is used; list of resources on the device that require controlled access

Intrusion protection APIs allowed to be executed by the applications; the file system inventory

Management Management server information; communication path implementation; rate and type of faux-commands

Countermeasures Response to tamper events and attestation violations

Table 2. Security Policy Examples
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Case Study: Aerospace Market 

This case study shows a mapping of the recommendations 

from DO-355 “Information Security Guidance for Continuing 

Airworthiness.” Note that this document has three separate sec-

tions for the Airborne Platform (sections 2 and 3), the Access 

Points (section 4), and the Ground Station Equipment (sections 5, 6, 

and 7). Table 3, Table 4, and Table 5 provide the mapping of DO-355 

to the CIA triad implementations.

Using this mapping and comparing it to the Wind River offerings 

for confidentiality, integrity, and availability, a notional multi-OS 

solution can be constructed as shown in Figure 20 as a representa-

tive example to fulfill these requirements.

Case Study: Medical Market

This case study shows a mapping of the Security Capabilities Sec-

tion of the Manufacturer Disclosure Statement for Medical Device 

Security47 to the components of the CIA triad shown in Table 6,  

Table 7, and Table 8. Note that n-x denotes that all categories within 

section “n” map to that implementation.

Using this mapping and comparing it to the Wind River offerings 

for confidentiality, integrity, and availability, a notional Linux-

based48 solution can be constructed as shown in Figure 21 as a 

representative example to fulfill these requirements.
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Table 3. Aerospace Case Study — Confidentiality Mapping

Table 4. Aerospace Case Study — Integrity Mapping

Table 5.  Aerospace Case Study — Availability Mapping
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