
The Perfect
Project



THE PERFECT PROJECT

2  |  White Paper

EXECUTIVE SUMMARY

How software is developed and delivered affects the bottom line at most industry 

companies. Software now represents the bigger value contribution, and offers the possibility 

to differentiate your product from the competition. So how software gets developed, and 

how it gets delivered, are no longer isolated questions for the engineering department—they 

are executive staff questions that affect the company’s bottom line.

Software development practices are undergoing dramatic changes. Continuous and Agile 

practices are used everywhere, all for the better. But inefficiencies are still huge in the 

embedded technology industry, and changes are slow.

It doesn’t have to be this way. Using Wind River® Simics® for system simulation allows 

access to target systems, tools for collaboration across teams, and new possibilities for 

automating what is not feasible in the “physical” world—all of which means that Simics 

enables the fundamentals of Agile practices. In this paper we will detail how providing 

access, collaboration, and automation have achieved the following:

TABLE OF CONTENTS 

Executive Summary .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
The Perfect Project .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
     What Is Perfection?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Project Phases   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    Develop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Integrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Cut debug time by 35%

Shortened bring-up time from  

22 weeks to 24 days

Saved  thousands of man 
hours in development

Helped companies get to market 

20% faster



THE PERFECT PROJECT

3  |  White Paper

THE PERFECT PROJECT

Your company builds complex electronic systems (networking 

equipment, systems for the Internet of Things, automotive systems, 

industrial robots, flight engines, etc.). In these systems, hardware 

meets software; your technical world involves multi-core hardware 

with multi-staged pipelines, heterogeneous systems, hardware 

accelerators, special purpose devices, ASICs, and more. 

Your software ranges from advanced firmware and boot software 

to complex OS set-ups, virtualization technology, complex I/O, 

networking management, data throughput analysis, fault software 

diagnostics … the list goes on. Your world is complex. 

You’re also part of an ecosystem, internally, externally, or both. You 

rely on other departments, units, subsidiaries, or third parties to 

deliver to you on time, and they rely on you. You also need to enable 

your users—partners or customers—with your technology and 

software development kits (SDKs) for developing certain functions 

of the complete system. With this web of dependencies comes risk.

To manage these two factors, technical complexity and risk, you 

must address developer efficiency and risk management. If you 

succeed, your reward will be shorter time-to-market, shorter timeto-

money, and lower total cost of ownership: the perfect project. 

What Is Perfection?

Perfection is an aspirational notion, so really this paper attempts 

to describe a more perfect project. By piecing together real-life 

scenarios from actual customers into one composite project, this 

paper is intended to help you visualize what a better, more efficient 

future might look like. 

We discuss five main activities: design, development, testing, 

integration, and enabling customers and your ecosystem. Within 

this framework, we give examples of how Simics has been used by 

our existing customers, in order to illustrate what a “perfect project” 

might look like. We also describe the significant impact simulation 

can have on developer efficiency and risk management. We’ll leave 

it to you to consider how pieces of this perfect project could expand 

across your organization to become a portfolio of “perfect projects.”

This paper is not about one project that accomplished everything 

discussed, but rather a composite of project components. Each 

individual component story is taken directly from one of our 

customers and is based on actual use. Every component, and every 

benefit discussed, has been experienced by at least one of our 

customers. 

PROJECT PHASES

Design

Define Your System Before Hardware Is Locked Down

Every project starts with a design, or a definition. In the perfect 

project, using a virtual platform instead of physical hardware in this 

early phase enables you to define the system virtually and decide 

on a system design before hardware design is locked down and 

taped out.

If you have a blank slate, with no legacy to consider, a virtual 

platform allows you to be creative without limits. Of course, in the 

real world this rarely happens. Instead you likely have a previous 

generation of your product that you will reuse pieces of—either 

software or hardware, or both. Whether you are starting from 

scratch or building on a legacy, when defining your next-generation 

product you will have access to a virtual platform of the hardware, 

and you can now play with what-if scenarios:

What happens if you move a software function from device A to 

device B? What happens if you scale up memory to be very large? 

What happens if you run the software on 12 cores instead of two? 

What happens if you move connector type T from board A to board 

B, or if you switch to using connector type S? In the perfect project 

you will develop hardware and software in tandem. You will let 

software design influence the overall system design—not hardware 

design. The benefit of defining your system virtually in this way 

is that you try out scenarios before you lock down the hardware 

design and before you tape out. The value of this risk mitigation is 

nearly impossible to quantify because you really don’t know what 

you don’t know. But most would agree that hardware errors, late 

tape outs, and early design misses can be extremely costly.

Simics enables Agile and Continuous Integration 
practices by providing access, automation, and 
collaboration.



THE PERFECT PROJECT

Develop

Start Software Development Before Hardware Arrives 

By using a virtual platform instead of physical hardware for development of your low-

level software, you can get access to this platform four to six months before the physical 

hardware arrives. 

Generally this early access is the most obvious benefit that Simics customers experience.  

During the platform development phase, your engineers will be using the simulated version 

of the hardware (the virtual platform), but the code they produce for it will be the real 

production code—the same binaries that will go into the final product. When the physical 

hardware arrives and it’s time for bring-up, the platform code is moved over to the physical 

hardware and works with few adjustments. We have customers who shorten bring-up 

time from 22 weeks to 29 days by using simulation. Some of our customers succeeded 

with bring-up in only two hours. One customer used to go into the bring-up integration 

phase with hundreds of bugs, and since they began using Simics, it’s down to under 20. It’s 

safe to say that using virtual platforms can dramatically reduce hardware bring-up time. 

Furthermore, since the code is executed on a simulator during development in the perfect 

project, your engineers have access to unparalleled debugging techniques. A simulator 

gives you complete control and perfect inspectability of your target, and will save your 

engineers 35% of traditional debugging time. The more complex the target is, and the closer 

the software is to the hardware, the higher the value of using the debugging techniques a 

simulator can offer.

One customer solved a problem in 30 minutes that would normally have taken a team of 

three people working three weeks to solve.

4  |  White Paper

SHARING THE  

VIRTUAL SYSTEM 

Cross-Functional Teams: 
Fused Development, Test-
ing, and Integration

Now you have a virtual platform 
of your entire system. The plat-
form code is available, and the 
virtual replica of your system is 
up and running. This executable 
virtual platform can now easily be 
shared among the entire team. 

In the perfect project, you don’t 
separate roles from functions, 
which just creates artificial bar-
riers and prevents efficient col-
laboration. Instead of “silos,” you 
organize as cross-functional 
teams, according to system 
expertise. These cross-functional 
teams will be up to you to define, 
as best serves your business 
needs: network throughput opti-
mization, fault diagnostic soft-
ware, control software, customer 
installation and configuration … 
the possibilities are endless.

This approach saves time because 
you work more efficiently. How 
much time depends on the size 
of your organization and how far 
you can take the vision of “fused 
development, testing, and integra-
tion.” One Simics customer has 

saved over 20,000 man hours … 

and counting. 

You will let software design influence the overall system design— not 
hardware design.

We have customers who shorten bring-up time from 22 weeks to 29 
days by using simulation.



THE PERFECT PROJECT

Test
Parallelize and Scale
In the perfect project, you scale out testing to a degree that is nearly impossible using 

only physical hardware. By parallelizing test runs on an infinite amount of virtual hardware, 

you gain both time and quality. You automatically configure and re-configure your entire 

hardware setup in no time because it is done via scripts. 

One customer configures complex labs in minutes instead of weeks. The team runs 

hundreds of different software workloads every hour. They load a completely new software 

stack for each workload run—and they do it for multiple configurations of their system in 

parallel. In addition, they connect network traffic generators to the system to test various 

scenarios. There is no practical alternative to implementing this practice with physical 

hardware, because having infinite hardware is simply impossible—too large and too costly.

We also have a customer who saved $3.2M per test cycle in man hours, just by letting 

the traditional test team use a simulation-based test bench as a complement to physical 

hardware. They simply augmented physical hardware with virtual hardware so that more 

tests could be run in parallel.

Integrate
From Continuous Integration to Continuous Deployment
What does it mean when you have cross-functional teams, working in rapid, small cycles, 

doing fast and continuous development and integration, having free access to virtual labs, 

with largescale automated and parallel testing? It means you can now move to continuous 

delivery or deployment. Deliver new features, capabilities, fixes, and quality to your 

customers in rapid cycles, and thereby accelerate business. If your business has anything 

to do with the Internet of Things, this capability may be a critical component for success. 

To deliver continuously, you need to get

your build cycles down significantly, and of course you will need to build and test on the 

physical hardware in the last stages. But to efficiently implement the rapid development 

cycles needed for continuous delivery, you cannot rely solely on physical hardware, 

which would simply be too costly and impractical. In the end, what continuous delivery 

or deployment means is increased quality delivered continuously to your customers, and 

being able to keep up with market demand.

Being able to implement continuous delivery has become a key competitive advantage for 

one of our larger customers, and is rapidly becoming important to more.

Enable
Support Your Customers and Ecosystem
It’s time for your project to enable a customer or a partner to begin developing their pieces 

of the overall system. Of course they also want to get an early start, so now you deliver the 

relevant subsystem, both the software load and the relevant underlying virtual hardware, 

as soon as it’s ready. Your customer or partner starts their own development based on 

the system you sent them, and you have made it possible for your customer or partner to 

shorten their time-to-market. Remember when you used to wait until after the hardware 

was past the alpha stage? Seems crazy now, doesn’t it?

5  |  White Paper

SIMULATION-BASED 
VIRTUAL LABS

In the perfect project you set up 
a virtual lab based on simulation. 
The virtual lab provides unlimited 
access to all sorts of virtual hard-
ware platforms, which meansyou 
have all configurations set up 
simultaneously. You use the virtu-
allab for two main purposes:

1. Continuous integration for all-
developers; fused development 
and testing

2. Automated, parallel, and larges-
cale regression testing

Using a virtual lab has two main 
benefits:

1. Flexibility, which leads to accel-
eration: All individual engineers 
have access to the virtual lab, 
which can easily be scaled out 
to any size. Engineers use it 
for continuous integration and 
nightly build and test reports. 
Each team sets up the report-
ing as they prefer: logging, 
profiling data, test results … on 
a virtual platform everything 
can be controlled, and you can 
access any data.

2. Cost savings: Using a simula-
tion-based virtual lab instead 
of a physical lab saves you 
floor space, energy, hard-
ware costs, and so on. One 
customer saves 38 times the 
floor space of physical labs by 
using simulation-based virtual 
labs, and 15 times the yearly 
cost of using physical hard-
ware by using virtual hardware. 
Anothercustomer saves $6M in 
target hardware lab costs. 



THE PERFECT PROJECT

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the digital 
transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability. 

© 2022 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 05/2022

Furthermore, if you have an SDK that you ship with your product, you now include the simulation 

tools in that SDK so that customers can take advantage of all the benefits you have. 

We have customers who run their development in programs spanning three or four 

separate companies. They all enable one another by using simulation. And some of them 

save as much as 20% in time-to-market by collaborating with simulation technology.

Another aspect of enabling customers and partners is training—and training on a virtual 

version of your end product makes things more practical. Since it’s all just software, you 

can send, share, and equip your students easily; all you need is a laptop. At Wind River, our 

VxWorks® training classes are performed on a virtual target, saving us time and making it 

easier to work with our students.

Now that your product is in your customers’ hands and they’ve been trained, what happens 

when they need help? Support is easy when your customers are able to email their system 

configurations with a checkpoint that your support team can easily replicate. At Wind River 

we use the checkpoint functionality to mark and share a specific point within a complete 

system state. Our support engineers say, “Checkpoints are great to replicate the customer 

issue. It significantly downsizes the effort and time needed to duplicate customers’ 

problems.” When our support team can use a checkpoint to address a customer issue, it 

saves them 20%–40% in time.

the system you sent them, and you have made it possible for your customer or partner to 

shorten their time-to-market. Remember when you used to wait until after the hardware 

was past the alpha stage? Seems crazy now, doesn’t it?

CONCLUSION

We’ve given you a look into the “perfect project” by using real examples of how Simics has 

been used by multiple customers. Each customer had a specific problem they wanted to 

solve with Simics, and most of them also discovered that Simics could solve problems they 

didn’t realize they had. In most cases they used Simics to increase developer efficiency 

and better manage their risk by decoupling dependencies between software activities and 

hardware activities. The end result, simply put, is that our customers can now produce 

better software faster. 

Through the context of the perfect project, we illustrated how allowing access to target 

systems, providing tools for collaboration, and automation can significantly improve all 

phases of your product lifecycle. We hope this paper has given you some ideas about how 

you can make your projects more perfect.

COLLABORATION AND 
COMMUNICATION

What does it mean when everyone 
uses the same set of tools and 
the same virtual replica of the 
hardware? It means everyone now 

“sees” the same thing, and that 
means they can communicate 
much more efficiently. (Are you 
familiar with the “well, it works for 
me” situation?) With “checkpoints,” 
teams and individuals communi-
cate and collaborate by sharing 
setups of the entire system and 
its state, all in software. They sim-
ply send an email to colleagues 
with the checkpoint attached and 
ask them to start execution from 
that specific point. Everything is 
included in the checkpoint, so the 
system can continue execution as 
if nothing had ever stopped. One 
individual can see and run exactly 
the same thing as his colleague. 
And it doesn’t matter where in the 
world they are located.

The end result, simply put, is that our customers can now  
produce better software faster.


